Keywords: chemotaxis; quasilinear; attraction-repulsion; stabilization
@article{10_5817_AM2023_2_163,
author = {Chiyo, Yutaro},
title = {Large time behavior in a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system},
journal = {Archivum mathematicum},
pages = {163--171},
year = {2023},
volume = {59},
number = {2},
doi = {10.5817/AM2023-2-163},
mrnumber = {4563028},
zbl = {07675586},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-163/}
}
TY - JOUR AU - Chiyo, Yutaro TI - Large time behavior in a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system JO - Archivum mathematicum PY - 2023 SP - 163 EP - 171 VL - 59 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-163/ DO - 10.5817/AM2023-2-163 LA - en ID - 10_5817_AM2023_2_163 ER -
%0 Journal Article %A Chiyo, Yutaro %T Large time behavior in a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system %J Archivum mathematicum %D 2023 %P 163-171 %V 59 %N 2 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-163/ %R 10.5817/AM2023-2-163 %G en %F 10_5817_AM2023_2_163
Chiyo, Yutaro. Large time behavior in a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system. Archivum mathematicum, Tome 59 (2023) no. 2, pp. 163-171. doi: 10.5817/AM2023-2-163
[1] Chiyo, Y.: Stabilization for small mass in a quasilinear parabolic-elliptic-elliptic attraction-repulsion chemotaxis system with density-dependent sensitivity: repulsion-dominant case. Adv. Math. Sci. Appl. 31 (2) (2022), 327–341. | MR
[2] Chiyo, Y., Marras, M., Tanaka, Y., Yokota, T.: Blow-up phenomena in a parabolic-elliptic-elliptic attraction-repulsion chemotaxis system with superlinear logistic degradation. Nonlinear Anal. 212 (2021), 14 pp., Paper No. 112550. | MR
[3] Chiyo, Y., Yokota, T.: Stabilization for small mass in a quasilinear parabolic-elliptic-elliptic attraction-repulsion chemotaxis system with density-dependent sensitivity: balanced case. Matematiche (Catania), to appear.
[4] Chiyo, Y., Yokota, T.: Boundedness and finite-time blow-up in a quasilinear parabolic-elliptic elliptic attraction-repulsion chemotaxis system. Z. Angew. Math. Phys. 73 (2) (2022), 27 pp., Paper No. 61. | DOI | MR
[5] Fujie, K., Suzuki, T.: Global existence and boundedness in a fully parabolic 2D attraction-repulsion system: chemotaxis-dominant case. Adv. Math. Sci. Appl. 28 (2019), 1–9. | MR
[6] Ishida, S., Yokota, T.: Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity. Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 2112–232. | MR
[7] Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. AMS, Providence, 1968.
[8] Lankeit, J.: Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete Contin. Dyn. Syst. Ser. S 13 (2) (2020), 233–255. | MR
[9] Lankeit, J.: Finite-time blow-up in the three-dimensional fully parabolic attraction-dominated attraction-repulsion chemotaxis system. J. Math. Anal. Appl. 504 (2) (2021), 16 pp., Paper No. 125409. | DOI | MR
[10] Li, Y., Lin, K., Mu, C.: Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system. Electron. J. Differential Equations 2015 (146) (2015), 13 pp. | MR
[11] Lin, K., Mu, C., Wang, L.: Large-time behavior of an attraction-repulsion chemotaxis system. J. Math. Anal. Appl. 426 (1) (2015), 105–124. | DOI | MR
[12] Luca, M., Chavez-Ross, A., Edelstein-Keshet, L., Mogliner, A.: Chemotactic signalling, microglia, and Alzheimer’s disease senile plague: Is there a connection?. Bull. Math. Biol. 65 (2003), 673–730. | DOI
[13] Tao, Y., Wang, Z.-A.: Competing effects of attraction vs. repulsion in chemotaxis. Math. Models Methods Appl. Sci. 23 (2013), 1–36. | DOI | MR
[14] Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differential Equations 252 (1) (2012), 692–715. | DOI | MR
[15] Winkler, M.: Global classical solvability and generic infinite-time blow-up in quasilinear Keller-Segel systems with bounded sensitivities. J. Differential Equations 266 (12) (2019), 8034–8066. | DOI | MR
Cité par Sources :