Keywords: quasilinear equation; positive solution; a priori bound
@article{10_5817_AM2023_2_155,
author = {Bae, Soohyun},
title = {A priori bounds for positive radial solutions of quasilinear equations of {Lane{\textendash}Emden} type},
journal = {Archivum mathematicum},
pages = {155--162},
year = {2023},
volume = {59},
number = {2},
doi = {10.5817/AM2023-2-155},
mrnumber = {4563027},
zbl = {07675585},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-155/}
}
TY - JOUR AU - Bae, Soohyun TI - A priori bounds for positive radial solutions of quasilinear equations of Lane–Emden type JO - Archivum mathematicum PY - 2023 SP - 155 EP - 162 VL - 59 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-155/ DO - 10.5817/AM2023-2-155 LA - en ID - 10_5817_AM2023_2_155 ER -
Bae, Soohyun. A priori bounds for positive radial solutions of quasilinear equations of Lane–Emden type. Archivum mathematicum, Tome 59 (2023) no. 2, pp. 155-162. doi: 10.5817/AM2023-2-155
[1] Bidaut-Véron, M.-F., Pohozaev, S.: Nonexistence results and estimates for some nonlinear elliptic problems. J. Anal. Math. 84 (2001), 1–49. | DOI | MR
[2] Kawano, N., Ni, W.-M., Yotsutani, S.: A generalized Pohozaev identity and its applications. J. Math. Soc. Japan 42 (1990), 541–564. | DOI
[3] Kawano, N., Yanagida, E., Yotsutani, S.: Structure theorems for positive radial solutions to ${\rm div} (|D u|^{m-2}D u) + K(|x|)u^q=0$ in ${\bf R}^n$. J. Math. Soc. Japan 45 (1993), 719–742.
[4] Li, Y., Ni, W.-M.: On conformal scalar curvature equation in ${\bf R}^n$. Duke Math. J. 57 (1988), 895–924.
[5] Ni, W.-M., Serrin, J.: Existence and non-existence theorems for ground states of quasilinear partial differential equations: The anomalous case. Atti Convegni Lincei 77 (1986), 231–257.
[6] Serrin, J., Zou, H.: Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities. Acta Math. 189 (2002), 79–142. | DOI | MR
Cité par Sources :