A priori bounds for positive radial solutions of quasilinear equations of Lane–Emden type
Archivum mathematicum, Tome 59 (2023) no. 2, pp. 155-162 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the quasilinear equation $\Delta _p u +K(|x|)u^q=0$, and present the proof of the local existence of positive radial solutions near $0$ under suitable conditions on $K$. Moreover, we provide a priori estimates of positive radial solutions near $\infty $ when $r^{-\ell }K(r)$ for $\ell \ge -p$ is bounded near $\infty $.
We consider the quasilinear equation $\Delta _p u +K(|x|)u^q=0$, and present the proof of the local existence of positive radial solutions near $0$ under suitable conditions on $K$. Moreover, we provide a priori estimates of positive radial solutions near $\infty $ when $r^{-\ell }K(r)$ for $\ell \ge -p$ is bounded near $\infty $.
DOI : 10.5817/AM2023-2-155
Classification : 35B45, 35J92
Keywords: quasilinear equation; positive solution; a priori bound
@article{10_5817_AM2023_2_155,
     author = {Bae, Soohyun},
     title = {A priori bounds for positive radial solutions of quasilinear equations of {Lane{\textendash}Emden} type},
     journal = {Archivum mathematicum},
     pages = {155--162},
     year = {2023},
     volume = {59},
     number = {2},
     doi = {10.5817/AM2023-2-155},
     mrnumber = {4563027},
     zbl = {07675585},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-155/}
}
TY  - JOUR
AU  - Bae, Soohyun
TI  - A priori bounds for positive radial solutions of quasilinear equations of Lane–Emden type
JO  - Archivum mathematicum
PY  - 2023
SP  - 155
EP  - 162
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-155/
DO  - 10.5817/AM2023-2-155
LA  - en
ID  - 10_5817_AM2023_2_155
ER  - 
%0 Journal Article
%A Bae, Soohyun
%T A priori bounds for positive radial solutions of quasilinear equations of Lane–Emden type
%J Archivum mathematicum
%D 2023
%P 155-162
%V 59
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-155/
%R 10.5817/AM2023-2-155
%G en
%F 10_5817_AM2023_2_155
Bae, Soohyun. A priori bounds for positive radial solutions of quasilinear equations of Lane–Emden type. Archivum mathematicum, Tome 59 (2023) no. 2, pp. 155-162. doi: 10.5817/AM2023-2-155

[1] Bidaut-Véron, M.-F., Pohozaev, S.: Nonexistence results and estimates for some nonlinear elliptic problems. J. Anal. Math. 84 (2001), 1–49. | DOI | MR

[2] Kawano, N., Ni, W.-M., Yotsutani, S.: A generalized Pohozaev identity and its applications. J. Math. Soc. Japan 42 (1990), 541–564. | DOI

[3] Kawano, N., Yanagida, E., Yotsutani, S.: Structure theorems for positive radial solutions to ${\rm div} (|D u|^{m-2}D u) + K(|x|)u^q=0$ in ${\bf R}^n$. J. Math. Soc. Japan 45 (1993), 719–742.

[4] Li, Y., Ni, W.-M.: On conformal scalar curvature equation in ${\bf R}^n$. Duke Math. J. 57 (1988), 895–924.

[5] Ni, W.-M., Serrin, J.: Existence and non-existence theorems for ground states of quasilinear partial differential equations: The anomalous case. Atti Convegni Lincei 77 (1986), 231–257.

[6] Serrin, J., Zou, H.: Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities. Acta Math. 189 (2002), 79–142. | DOI | MR

Cité par Sources :