Keywords: second-order differential inclusion; nonlocal conditions; Banach spaces; cosine family; approximation solvability method; mild solution
@article{10_5817_AM2023_1_99,
author = {Pavla\v{c}kov\'a, Martina and Taddei, Valentina},
title = {Nonlocal semilinear second-order differential inclusions in abstract spaces without compactness},
journal = {Archivum mathematicum},
pages = {99--107},
year = {2023},
volume = {59},
number = {1},
doi = {10.5817/AM2023-1-99},
mrnumber = {4563020},
zbl = {07675578},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-99/}
}
TY - JOUR AU - Pavlačková, Martina AU - Taddei, Valentina TI - Nonlocal semilinear second-order differential inclusions in abstract spaces without compactness JO - Archivum mathematicum PY - 2023 SP - 99 EP - 107 VL - 59 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-99/ DO - 10.5817/AM2023-1-99 LA - en ID - 10_5817_AM2023_1_99 ER -
%0 Journal Article %A Pavlačková, Martina %A Taddei, Valentina %T Nonlocal semilinear second-order differential inclusions in abstract spaces without compactness %J Archivum mathematicum %D 2023 %P 99-107 %V 59 %N 1 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-99/ %R 10.5817/AM2023-1-99 %G en %F 10_5817_AM2023_1_99
Pavlačková, Martina; Taddei, Valentina. Nonlocal semilinear second-order differential inclusions in abstract spaces without compactness. Archivum mathematicum, Tome 59 (2023) no. 1, pp. 99-107. doi: 10.5817/AM2023-1-99
[1] Andres, J., Malaguti, L., Pavlačková, M.: On second-order boundary value problems in Banach spaces: a bound sets approach. Topol. Methods Nonlinear Anal. 37 (2) (2011), 303–341. | MR
[2] Andres, J., Malaguti, L., Pavlačková, M.: A Scorza-Dragoni approach to second-order boundary value problems in abstract spaces. Appl. Math. Inf. Sci. 6 (2) (2012), 29–44. | MR
[3] Balachandran, K., Park, J.Y.: Existence of solutions of second order nonlinear differential equations with nonlocal conditions in Banach spaces. Indian J. Pure Appl. Math. 32 (12) (2001), 1883–1891. | MR
[4] Benchohra, M., Nieto, J.J., Rezoug, N.: Second order evolution equations with nonlocal conditions. Demonstr. Math. 50 (2017), 309–319. | DOI | MR
[5] Benchohra, M., Rezoug, N., Samet, B., Zhou, Y.: Second order semilinear Volterra-type integro-differential equations with non-instantaneous impulses. Mathematics 7 (12) (2019), 20 pp., art. no. 1134. | DOI
[6] Benedetti, I., Loi, N.V., Malaguti, L., Obukhovskii, V.: An approximation solvability method for nonlocal differential problems in Hilbert spaces. Commun. Contemp. Math. 19 (2) (2017), 34 pp. | MR
[7] Benedetti, I., Loi, N.V., Malaguti, L., Taddei, V.: Nonlocal diffusion second order partial differential equations. J. Differential Equations 262 (2007), 1499–1523. | DOI | MR
[8] Benedetti, I., Loi, N.V., Taddei, V.: An approximation solvability method for nonlocal semilinear differential problems in Banach spaces. Discrete Contin. Dyn. Syst. Ser. A 37 (6) (2017), 2977–2998. | DOI | MR
[9] Benedetti, I., Malaguti, L., Taddei, V.: Nonlocal semilinear evolution equations without strong compactness: theory and applications. Rend. Istit. Mat. Univ. Trieste 44 (2012), 371–388. | MR
[10] Bochner, S., Taylor, A.E.: Linear functionals on certain spaces of abstractly valued functions. Ann. Math. 39 (1938), 913–944. | DOI
[11] Byszewski, L., Lakshmikantham, V.: Theorem about the existence and uniqueness of a solution of a nonlocal abstract cauchy problem in a Banach space. Appl. Anal. 40 (1) (1991), 11–19. | DOI
[12] Cardinali, T., Gentili, S.: An existence theorem for a non-autonomous second order nonlocal multivalued problem. Stud. Univ. Babeş-Bolyai Math. 62 (1) (2017), 101–117. | DOI | MR
[13] Cernea, A.: A note on the solutions of a second-order evolution in non separable Banach spaces. Comment. Math. Univ. Carolin. 58 (3) (2017), 307–314. | MR
[14] Henríquez, H.R., Poblete, V., Pozo, J.: Mild solutions of non-autonomous second order problems with nonlocal initial conditions. J. Math. Anal. Appl. 412 (2014), 1064–1083. | DOI | MR
[15] Hernández, E.M., Henríquez, H.R.: Global solutions for a functional second order abstract Cauchy problem with nonlocal conditions. Ann. Polon. Math. 83 (2) (2004), 149–170. | DOI | MR
[16] Hernández, E.M., Henríquez, H.R.: Existence results for second order differential equations with nonlocal conditions in Banach spaces. Funkcial. Ekvac. 52 (1) (2009), 113–137. | DOI | MR
[17] Kakutani, S.A.: Generalization of Brouwer’s fixed point theorem. Duke Math. J. 8 (1941), 451–459. | DOI
[18] Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing multivalued maps and semilinear differential inclusions in Banach spaces. W. de Gruyter, Berlin, 2001. | MR
[19] Malaguti, L., Perrotta, S., Taddei, V.: $ L^p $ exact controllability of partial differential equations with nonlocal terms. Evol. Equ. Control Theory 11 (5) (2022), 1533–1564. | DOI | MR
[20] Pavlačková, M., Taddei, V.: Mild solutions of second-order semilinear impulsive differential inclusions in Banach spaces. Mathematics 10 (672) (2022). | DOI
[21] Tidke, H.L., Dhakne, M.B.: Global existence of mild solutions of second order nonlinear Volterra integrodifferential equations in Banach spaces. Differ. Equ. Dyn. Syst. 17 (4) (2009), 331–342. | DOI | MR
[22] Travis, C.C., Webb, G.F.: Cosine families and abstract nonlinear second order differential equations. Acta Math. Acad. Sci. Hungar. 32 (1–2) (1978), 75–96. | DOI
[23] Wu, J.: Theory and application of partial functional differential equations. Springer-Verlag, New York, 1996.
[24] Xiao, J.-Z., Zhu, X.-H., Cheng, R.: The solution sets for second order semilinear impulsive multivalued boundary value problems. Comput. Math. Appl. 64 (2) (2012), 147–160. | DOI | MR
Cité par Sources :