Delay-dependent stability conditions for fundamental characteristic functions
Archivum mathematicum, Tome 59 (2023) no. 1, pp. 77-84
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
This paper is devoted to the investigation on the stability for two characteristic functions $f_1(z) = z^2+pe^{-z\tau }+q$ and $f_2(z) = z^2+pz e^{-z\tau }+q$, where $p$ and $q$ are real numbers and $\tau >0$. The obtained theorems describe the explicit stability dependence on the changing delay $\tau $. Our results are applied to some special cases of a linear differential system with delay in the diagonal terms and delay-dependent stability conditions are obtained.
DOI :
10.5817/AM2023-1-77
Classification :
34K20, 34K25
Keywords: characteristic equation; delay; stability switch
Keywords: characteristic equation; delay; stability switch
@article{10_5817_AM2023_1_77,
author = {Matsunaga, Hideaki},
title = {Delay-dependent stability conditions for fundamental characteristic functions},
journal = {Archivum mathematicum},
pages = {77--84},
publisher = {mathdoc},
volume = {59},
number = {1},
year = {2023},
doi = {10.5817/AM2023-1-77},
mrnumber = {4563018},
zbl = {07675576},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-77/}
}
TY - JOUR AU - Matsunaga, Hideaki TI - Delay-dependent stability conditions for fundamental characteristic functions JO - Archivum mathematicum PY - 2023 SP - 77 EP - 84 VL - 59 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-77/ DO - 10.5817/AM2023-1-77 LA - en ID - 10_5817_AM2023_1_77 ER -
Matsunaga, Hideaki. Delay-dependent stability conditions for fundamental characteristic functions. Archivum mathematicum, Tome 59 (2023) no. 1, pp. 77-84. doi: 10.5817/AM2023-1-77
Cité par Sources :