Delay-dependent stability conditions for fundamental characteristic functions
Archivum mathematicum, Tome 59 (2023) no. 1, pp. 77-84 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is devoted to the investigation on the stability for two characteristic functions $f_1(z) = z^2+pe^{-z\tau }+q$ and $f_2(z) = z^2+pz e^{-z\tau }+q$, where $p$ and $q$ are real numbers and $\tau >0$. The obtained theorems describe the explicit stability dependence on the changing delay $\tau $. Our results are applied to some special cases of a linear differential system with delay in the diagonal terms and delay-dependent stability conditions are obtained.
This paper is devoted to the investigation on the stability for two characteristic functions $f_1(z) = z^2+pe^{-z\tau }+q$ and $f_2(z) = z^2+pz e^{-z\tau }+q$, where $p$ and $q$ are real numbers and $\tau >0$. The obtained theorems describe the explicit stability dependence on the changing delay $\tau $. Our results are applied to some special cases of a linear differential system with delay in the diagonal terms and delay-dependent stability conditions are obtained.
DOI : 10.5817/AM2023-1-77
Classification : 34K20, 34K25
Keywords: characteristic equation; delay; stability switch
@article{10_5817_AM2023_1_77,
     author = {Matsunaga, Hideaki},
     title = {Delay-dependent stability conditions for fundamental characteristic functions},
     journal = {Archivum mathematicum},
     pages = {77--84},
     year = {2023},
     volume = {59},
     number = {1},
     doi = {10.5817/AM2023-1-77},
     mrnumber = {4563018},
     zbl = {07675576},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-77/}
}
TY  - JOUR
AU  - Matsunaga, Hideaki
TI  - Delay-dependent stability conditions for fundamental characteristic functions
JO  - Archivum mathematicum
PY  - 2023
SP  - 77
EP  - 84
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-77/
DO  - 10.5817/AM2023-1-77
LA  - en
ID  - 10_5817_AM2023_1_77
ER  - 
%0 Journal Article
%A Matsunaga, Hideaki
%T Delay-dependent stability conditions for fundamental characteristic functions
%J Archivum mathematicum
%D 2023
%P 77-84
%V 59
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-77/
%R 10.5817/AM2023-1-77
%G en
%F 10_5817_AM2023_1_77
Matsunaga, Hideaki. Delay-dependent stability conditions for fundamental characteristic functions. Archivum mathematicum, Tome 59 (2023) no. 1, pp. 77-84. doi: 10.5817/AM2023-1-77

[1] Čermák, J., Kisela, T.: Stabilization and destabilization of fractional oscillators via a delayed feedback control. Commun. Nonlinear Sci. Numer. Simul. 117 (2023), 16 pp., Paper No. 106960. | DOI | MR

[2] Cooke, K.L., Grossman, Z.: Discrete delay, distributed delay and stability switches. J. Math. Anal. Appl. 86 (1982), 592–627. | DOI

[3] Freedman, H.I., Kuang, Y.: Stability switches in linear scalar neutral delay equations. Funkcial. Ekvac. 34 (1991), 187–209.

[4] Hata, Y., Matsunaga, H.: Delay-dependent stability switches in a delay differential system. submitted for publication.

[5] Hsu, C.S., Bhatt, S.J.: Stability charts for second-order dynamical systems with time lag. J. Appl. Mech. 33 (1966), 119–124. | DOI

[6] Matsunaga, H.: Stability switches in a system of linear differential equations with diagonal delay. Appl. Math. Comput. 212 (2009), 145–152. | DOI | MR

[7] Stépán, G.: Retarded Dynamical Systems: Stability and Characteristic Functions. Longman Scientific & Technical, New York, 1989.

Cité par Sources :