Stable periodic solutions in scalar periodic differential delay equations
Archivum mathematicum, Tome 59 (2023) no. 1, pp. 69-76
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A class of nonlinear simple form differential delay equations with a $T$-periodic coefficient and a constant delay $\tau >0$ is considered. It is shown that for an arbitrary value of the period $T>4\tau -d_0$, for some $d_0>0$, there is an equation in the class such that it possesses an asymptotically stable $T$-period solution. The periodic solutions are constructed explicitly for the piecewise constant nonlinearities and the periodic coefficients involved, by reduction of the problem to one-dimensional maps. The periodic solutions and their stability properties are shown to persist when the nonlinearities are “smoothed” at the discontinuity points.
DOI :
10.5817/AM2023-1-69
Classification :
34K13, 34K20, 34K39
Keywords: delay differential equations; nonlinear negative feedback; periodic coefficients; periodic solutions; stability
Keywords: delay differential equations; nonlinear negative feedback; periodic coefficients; periodic solutions; stability
@article{10_5817_AM2023_1_69,
author = {Ivanov, Anatoli and Shelyag, Sergiy},
title = {Stable periodic solutions in scalar periodic differential delay equations},
journal = {Archivum mathematicum},
pages = {69--76},
publisher = {mathdoc},
volume = {59},
number = {1},
year = {2023},
doi = {10.5817/AM2023-1-69},
mrnumber = {4563017},
zbl = {07675575},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-69/}
}
TY - JOUR AU - Ivanov, Anatoli AU - Shelyag, Sergiy TI - Stable periodic solutions in scalar periodic differential delay equations JO - Archivum mathematicum PY - 2023 SP - 69 EP - 76 VL - 59 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-69/ DO - 10.5817/AM2023-1-69 LA - en ID - 10_5817_AM2023_1_69 ER -
%0 Journal Article %A Ivanov, Anatoli %A Shelyag, Sergiy %T Stable periodic solutions in scalar periodic differential delay equations %J Archivum mathematicum %D 2023 %P 69-76 %V 59 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-69/ %R 10.5817/AM2023-1-69 %G en %F 10_5817_AM2023_1_69
Ivanov, Anatoli; Shelyag, Sergiy. Stable periodic solutions in scalar periodic differential delay equations. Archivum mathematicum, Tome 59 (2023) no. 1, pp. 69-76. doi: 10.5817/AM2023-1-69
Cité par Sources :