Keywords: delay differential equations; nonlinear negative feedback; periodic coefficients; periodic solutions; stability
@article{10_5817_AM2023_1_69,
author = {Ivanov, Anatoli and Shelyag, Sergiy},
title = {Stable periodic solutions in scalar periodic differential delay equations},
journal = {Archivum mathematicum},
pages = {69--76},
year = {2023},
volume = {59},
number = {1},
doi = {10.5817/AM2023-1-69},
mrnumber = {4563017},
zbl = {07675575},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-69/}
}
TY - JOUR AU - Ivanov, Anatoli AU - Shelyag, Sergiy TI - Stable periodic solutions in scalar periodic differential delay equations JO - Archivum mathematicum PY - 2023 SP - 69 EP - 76 VL - 59 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-69/ DO - 10.5817/AM2023-1-69 LA - en ID - 10_5817_AM2023_1_69 ER -
Ivanov, Anatoli; Shelyag, Sergiy. Stable periodic solutions in scalar periodic differential delay equations. Archivum mathematicum, Tome 59 (2023) no. 1, pp. 69-76. doi: 10.5817/AM2023-1-69
[1] Berezansky, L., Braverman, E., Idels, L.: Nicholson’s blowflies differential equations revisited: Main results and open problems. Appl. Math. Model. 34 (2010), 1405–1417. | DOI | MR
[2] Berezansky, L., Braverman, E., Idels, L.: Mackey-Glass model of hematopoiesis with monotone feedback revisited. Appl. Math. Comput. 219 (9) (2013), 4892–4907. | DOI | MR
[3] Diekmann, O., van Gils, S., Verdyn Lunel, S., Walther, H.-O.: Delay Equations: Complex, Functional, and Nonlinear Analysis. Springer-Verlag, New York, 1995.
[4] Erneux, T.: Applied delay differential equations. Surveys and Tutorials in the Applied Mathematical Sciences, vol. 3, Springer Verlag, 2009. | MR
[5] Györy, I., Ladas, G.: Oscillation Theory of Delay Differential Equations. Oxford Science Publications, Clarendon Press, Oxford, 1991, 368 pp.
[6] Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Applied Mathematical Sciences, Springer-Verlag, New York, 1993. | Zbl
[7] Ivanov, A.F., Sharkovsky, A.N.: Oscillations in singularly perturbed delay equations. Dynamics Reported (New Series) 1 (1991), 165–224.
[8] Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Mathematics in Science and Engineering, vol. 191, Academic Press Inc., 1993, p. 398. | Zbl
[9] Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197 (1977), 287–289. | DOI
[10] Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences. Texts in Applied Mathematics, vol. 57, Springer-Verlag, 2011. | MR | Zbl
[11] Walther, H.-O.: Homoclinic solution and chaos in $\dot{x}(t)=f(x(t-1))$. Nonlinear Anal. 5 (7) (1981), 775–788. | DOI
[12] Wazewska-Czyzewska, M., Lasota, A.: Mathematical models of the red cell system. Matematyka Stosowana 6 (1976), 25–40, in Polish.
Cité par Sources :