A note on the oscillation problems for differential equations with $p(t)$-Laplacian
Archivum mathematicum, Tome 59 (2023) no. 1, pp. 39-45 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper deals with the oscillation problems on the nonlinear differential equation $(a(t)|x^{\prime }|^{p(t)-2}x^{\prime })^{\prime }+b(t)|x|^{\lambda -2}x=0$ involving $p(t)$-Laplacian. Sufficient conditions are given under which all proper solutions are oscillatory. In addition, we give a-priori estimates for nonoscillatory solutions and propose an open problem.
This paper deals with the oscillation problems on the nonlinear differential equation $(a(t)|x^{\prime }|^{p(t)-2}x^{\prime })^{\prime }+b(t)|x|^{\lambda -2}x=0$ involving $p(t)$-Laplacian. Sufficient conditions are given under which all proper solutions are oscillatory. In addition, we give a-priori estimates for nonoscillatory solutions and propose an open problem.
DOI : 10.5817/AM2023-1-39
Classification : 34C10, 34C15
Keywords: oscillation; $p(t)$-Laplacian; half-linear differential equations
@article{10_5817_AM2023_1_39,
     author = {Fujimoto, K\={o}dai},
     title = {A note on the oscillation problems for differential equations with $p(t)${-Laplacian}},
     journal = {Archivum mathematicum},
     pages = {39--45},
     year = {2023},
     volume = {59},
     number = {1},
     doi = {10.5817/AM2023-1-39},
     mrnumber = {4563015},
     zbl = {07675573},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-39/}
}
TY  - JOUR
AU  - Fujimoto, Kōdai
TI  - A note on the oscillation problems for differential equations with $p(t)$-Laplacian
JO  - Archivum mathematicum
PY  - 2023
SP  - 39
EP  - 45
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-39/
DO  - 10.5817/AM2023-1-39
LA  - en
ID  - 10_5817_AM2023_1_39
ER  - 
%0 Journal Article
%A Fujimoto, Kōdai
%T A note on the oscillation problems for differential equations with $p(t)$-Laplacian
%J Archivum mathematicum
%D 2023
%P 39-45
%V 59
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-39/
%R 10.5817/AM2023-1-39
%G en
%F 10_5817_AM2023_1_39
Fujimoto, Kōdai. A note on the oscillation problems for differential equations with $p(t)$-Laplacian. Archivum mathematicum, Tome 59 (2023) no. 1, pp. 39-45. doi: 10.5817/AM2023-1-39

[1] Bartušek, M., Fujimoto, K.: Singular solutions of nonlinear differential equations with $p(t)$-Laplacian. J. Differential Equations 269 (2020), 11646–11666. | DOI | MR

[2] Berselli, L.C., Breit, D., Diening, L.: Convergence analysis for a finite element approximation of a steady model for electrorheological fluids. Numer. Math. 132 (2016), 657–689. | DOI | MR

[3] Chanturia, T.A.: On singular solutions of strongly nonlinear systems of ordinary differential equations. Function theoretic methods in differential equations, Res. Notes in Math., no. 8, Pitman, London, 1976, pp. 196–204.

[4] Došlá, Z., Fujimoto, K.: Asymptotic behavior of solutions to differential equations with $p(t)$-Laplacian. Commun. Contemp. Math. 24 (2022), 1–22, No. 2150046. | DOI | MR

[5] Došlá, Z., Marini, M.: On super-linear Emden–Fowler type differential equations. J. Math. Anal. Appl. 416 (2014), 497–510. | DOI | MR

[6] Došlá, Z., Marini, M.: Monotonicity conditions in oscillation to superlinear differential equations. Electron. J. Qual. Theory Differ. Equ. 2016 (2016), 1–13, No. 54. | MR

[7] Došlý, O., Řehák, P.: Half-Linear Differential Equations. North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2005. | MR

[8] Fujimoto, K.: Power comparison theorem for oscillation problems for second order differential equations with $p(t)$-Laplacian. Acta Math. Hungar. 162 (2020), 333–344. | DOI | MR

[9] Fujimoto, K., Yamaoka, N.: Oscillation constants for Euler type differential equations involving the $p(t)$-Laplacian. J. Math. Anal. Appl. 470 (2019), 1238–1250. | DOI | MR

[10] Harjulehto, P., Hästö, P., Lê, Ú.V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal. 72 (2010), 4551–4574. | DOI | MR | Zbl

[11] Kiguradze, I.T., Chanturia, T.A.: Asymptotic properties of solutions of nonautonomous ordinary differential equations. Kluwer Academic Publishers Group, Dordrecht, 1993. | Zbl

[12] Kitano, M., Kusano, T.: On a class of second order quasilinear ordinary differential equations. Hiroshima Math. J. 25 (1995), 321–355. | DOI

[13] Mehta, B.N., Aris, R.: A note on a form of the Emden-Fowler equation. J. Math. Anal. Appl. 36 (1971), 611–621. | DOI

[14] Rajagopal, K.R., Růžička, M.: On the modeling of electrorheological materials. Mech. Res. Comm. 23 (1996), 401–407. | DOI

[15] Şahiner, Y., Zafer, A.: Oscillation of nonlinear elliptic inequalities with $p(x)$-Laplacian. Complex Var. Elliptic Equ. 58 (2013), 537–546. | DOI | MR

[16] Shoukaku, Y.: Oscillation criteria for half-linear differential equations with $p(t)$-Laplacian. Differ. Equ. Appl. 6 (2014), 353–360. | MR

[17] Shoukaku, Y.: Oscillation criteria for nonlinear differential equations with $p(t)$-Laplacian. Math. Bohem. 141 (2016), 71–81. | DOI | MR

[18] Zhang, Q.: Oscillatory property of solutions for $p(t)$-Laplacian equations. J. Inequal. Appl. 2007 (2007), 1–8, 58548. | DOI | MR

Cité par Sources :