Keywords: nonlinear Schrödinger equation; stationary solutions; supercritical dimensions; shooting method
@article{10_5817_AM2023_1_31,
author = {Ficek, Filip},
title = {Stationary solutions of semilinear {Schr\"odinger} equations with trapping potentials in supercritical dimensions},
journal = {Archivum mathematicum},
pages = {31--38},
year = {2023},
volume = {59},
number = {1},
doi = {10.5817/AM2023-1-31},
mrnumber = {4563014},
zbl = {07675572},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-31/}
}
TY - JOUR AU - Ficek, Filip TI - Stationary solutions of semilinear Schrödinger equations with trapping potentials in supercritical dimensions JO - Archivum mathematicum PY - 2023 SP - 31 EP - 38 VL - 59 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-31/ DO - 10.5817/AM2023-1-31 LA - en ID - 10_5817_AM2023_1_31 ER -
%0 Journal Article %A Ficek, Filip %T Stationary solutions of semilinear Schrödinger equations with trapping potentials in supercritical dimensions %J Archivum mathematicum %D 2023 %P 31-38 %V 59 %N 1 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-31/ %R 10.5817/AM2023-1-31 %G en %F 10_5817_AM2023_1_31
Ficek, Filip. Stationary solutions of semilinear Schrödinger equations with trapping potentials in supercritical dimensions. Archivum mathematicum, Tome 59 (2023) no. 1, pp. 31-38. doi: 10.5817/AM2023-1-31
[1] Bizoń, P.: Is AdS stable?. Gen. Relativity Gravitation 46 (2014), 14 pp., Art. 1724. | DOI | MR
[2] Bizoń, P., Evnin, O., Ficek, F.: A nonrelativistic limit for AdS perturbations. JHEP 12 (113) (2018), 18 pp. | MR
[3] Bizoń, P., Ficek, F., Pelinovsky, D.E., Sobieszek, S.: Ground state in the energy super-critical Gross-Pitaevskii equation with a harmonic potential. Nonlinear Anal. 210 (2021), 36 pp., Paper No. 112358. | MR
[4] Busca, J., Sirakov, B.: Symmetry results for semilinear elliptic systems in the whole space. J. Differential Equations 63 (2000), 41–56. | DOI
[5] Choquard, P., Stubbe, J., Vuffray, M.: Stationary solutions of the Schrödinger-Newton model – an ODE approach. Differential Integral Equations 21 (2008), 665–679. | MR
[6] Clapp, M., Szulkin, A.: Non-variational weakly coupled elliptic systems. Anal. Math. Phys. 12 (2022), 1–19. | DOI | MR
[7] Ficek, F.: Schrödinger-Newton-Hooke system in higher dimensions: Stationary states. Phys. Rev. D 103 (2021), 13 pp., Paper No. 104062. | DOI | MR
[8] Gallo, C., Pelinovsky, D.: On the Thomas-Fermi ground state in a harmonic potential. Asymptot. Anal. 73 (2011), 53–96. | MR
[9] Hastings, P., McLeod, J.B.: Classical Methods in Ordinary Differential Equations With Applications to Boundary Value Problems. AMS Providence, Rhode Island, 2012. | MR
[10] Li, Y., Ni, W.: Radial symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$. Comm. Partial Differential Equations 18 (1993), 1043–1054. | DOI
[11] Pelinovsky, D.E., Wei, J., Wu, Y.: Positive solutions of the Gross-Pitaevskii equation for energy critical and supercritical nonlinearities. arXiv:2207.10145 [math.AP].
[12] Selem, F.H.: Radial solutions with prescribed numbers of zeros for the nonlinear Schrödinger equation with harmonic potential. Nonlinearity 24 (2011), 1795–1819. | DOI | MR
[13] Selem, F.H., Kikuchi, H.: Existence and non-existence of solution for semilinear elliptic equation with harmonic potential and Sobolev critical/supercritical nonlinearities. J. Math. Anal. Appl. 387 (2012), 746–754. | DOI | MR
[14] Selem, F.H., Kikuchi, H., Wei, J.: Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete Contin. Dyn. Syst. 33 (2013), 4613–4626. | MR
[15] Smith, R.A.: Asymptotic stability of $x^{\prime \prime }+a(t)x^{\prime }+x=0$. Q. J. Math. 12 (1961), 123–126.
Cité par Sources :