Topological entropy and differential equations
Archivum mathematicum, Tome 59 (2023) no. 1, pp. 3-10 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

On the background of a brief survey panorama of results on the topic in the title, one new theorem is presented concerning a positive topological entropy (i.e. topological chaos) for the impulsive differential equations on the Cartesian product of compact intervals, which is positively invariant under the composition of the associated Poincaré translation operator with a multivalued upper semicontinuous impulsive mapping.
On the background of a brief survey panorama of results on the topic in the title, one new theorem is presented concerning a positive topological entropy (i.e. topological chaos) for the impulsive differential equations on the Cartesian product of compact intervals, which is positively invariant under the composition of the associated Poincaré translation operator with a multivalued upper semicontinuous impulsive mapping.
DOI : 10.5817/AM2023-1-3
Classification : 34A37, 34C28, 37B40, 47H04
Keywords: topological entropy; impulsive differential equations; multivalued impulses; topological chaos
@article{10_5817_AM2023_1_3,
     author = {Andres, Jan and Ludv{\'\i}k, Pavel},
     title = {Topological entropy and differential equations},
     journal = {Archivum mathematicum},
     pages = {3--10},
     year = {2023},
     volume = {59},
     number = {1},
     doi = {10.5817/AM2023-1-3},
     mrnumber = {4563011},
     zbl = {07675569},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-3/}
}
TY  - JOUR
AU  - Andres, Jan
AU  - Ludvík, Pavel
TI  - Topological entropy and differential equations
JO  - Archivum mathematicum
PY  - 2023
SP  - 3
EP  - 10
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-3/
DO  - 10.5817/AM2023-1-3
LA  - en
ID  - 10_5817_AM2023_1_3
ER  - 
%0 Journal Article
%A Andres, Jan
%A Ludvík, Pavel
%T Topological entropy and differential equations
%J Archivum mathematicum
%D 2023
%P 3-10
%V 59
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-3/
%R 10.5817/AM2023-1-3
%G en
%F 10_5817_AM2023_1_3
Andres, Jan; Ludvík, Pavel. Topological entropy and differential equations. Archivum mathematicum, Tome 59 (2023) no. 1, pp. 3-10. doi: 10.5817/AM2023-1-3

[1] Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Trans. Amer. Math. Soc. 114 (1965), 309–319. | DOI

[2] Andres, J.: Topological entropy for impulsive differential equations. Electron. J. Qual. Theory Differ. Equ. (2020), Paper No. 68, 1–15, Corrigendum to "Topological entropy for impulsive differential equations". Electron. J. Qual. Theory Differ. Equ., (2021) Paper No. 19, 1-3. | DOI | MR

[3] Andres, J.: Chaos for differential equations with multivalued impulses. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 31 (2021), no. 7, Paper No. 2150113, 16. | MR

[4] Andres, J.: Topological chaos for differential inclusions with multivalued impulses on tori. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 31 (2021), no. 15, Paper No. 2150237, 11. | MR

[5] Andres, J.: Parametric topological entropy and differential equations with time-dependent impulses. J. Differential Equations 317 (2022), 365–386. | DOI | MR

[6] Andres, J., Górniewicz, L.: Topological fixed point principles for boundary value problems. Topological Fixed Point Theory and Its Applications, vol. 1, Kluwer Academic Publishers, Dordrecht, 2003. | MR

[7] Andres, J., Jezierski, J.: Ivanov’s Theorem for Admissible Pairs Applicable to Impulsive Differential Equations and Inclusions on Tori. Mathematics 8 (2020), no. 9. | DOI

[8] Andres, J., Ludvík, P.: Topological entropy of composition and impulsive differential equations satisfying a uniqueness condition. Chaos Solitons Fractals 156 (2022), Paper No. 111800, 11. | DOI | MR

[9] Anikushin, M.M., Raĭtmann, F.: Development of the concept of topological entropy for systems with multidimensional time. Differ. Uravn. Protsessy Upr. 52 (2016), no. 4, 14–41. | MR

[10] Bowen, R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Amer. Math. Soc. 153 (1971), 401–414. | DOI

[11] Cánovas, J. S., Rodríguez, J.M.: Topological entropy of maps on the real line. Topology Appl. 153 (2005), no. 5-6, 735–746. | DOI | MR

[12] Hoock, A.-M.: Topological and invariance entropy for infinite-dimensional linear systems. J. Dyn. Control Syst. 20 (2014), no. 1, 19–31. | MR

[13] Jaque, N., San Martín, B.: Topological entropy and metric entropy for regular impulsive semiflows. 2019, arXiv: 1909.09897. | MR

[14] Jaque, N., San Martín, B.: Topological entropy for discontinuous semiflows. J. Differential Equations 266 (2019), no. 6, 3580–3600. | DOI | MR

[15] Jiang, B.J.: Nielsen theory for periodic orbits and applications to dynamical systems. Nielsen theory and dynamical systems (South Hadley, MA, 1992), Contemp. Math., vol. 152, Amer. Math. Soc., Providence, RI, 1993, pp. 183–202.

[16] Kawan, Ch., Matveev, A.S., Pogromsky, A.Yu.: Remote state estimation problem: towards the data-rate limit along the avenue of the second Lyapunov method. Automatica J. IFAC 125(4) (2021), 1–12. | DOI | MR

[17] Kelly, J.P., Tennant, T.: Topological entropy of set-valued functions. Houston J. Math. 43 (2017), no. 1, 263–282. | MR

[18] Krasnoselskiĭ, M.A.: The operator of translation along the trajectories of differential equations. American Mathematical Society, Providence, R.I., 1968.

[19] Matsuoka, T.: The number and linking of periodic solutions of periodic systems. Invent. Math. 70 (1982/83), no. 3, 319–340. | DOI

[20] Matsuoka, T.: The number and linking of periodic solutions of nondissipative systems. J. Differential Equations 76 (1988), no. 1, 190–201. | DOI

[21] Pogromsky, A.Yu., Matveev, A.S.: Estimation of topological entropy via the direct Lyapunov method. Nonlinearity 24 (2011), no. 7, 1937–1959. | DOI | MR

[22] Shiraiwa, K.: A generalization of the Levinson-Massera’s equalities. Nagoya Math. J. 67 (1977), 121–138. | DOI

[23] Tien, L., Nhien, L.: On the Topological Entropy of Nonautonomous Differential Equations. Journal of Applied Mathematics and Physics 07 (2019), 418–429. | DOI

[24] Vetokhin, A.N.: Topological entropy of a diagonalizable linear system of differential equations. Int. Workshop QUALITDE-2020 (December 19-21, 2020) (Tbilisi, Georgia), 2021.

[25] Walters, P.: An introduction to ergodic theory. Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982.

[26] Wang, Z., Ma, J., Chen, Z., Zhang, Q.: A new chaotic system with positive topological entropy. Entropy 17 (2015), no. 8, 5561–5579. | MR

[27] Wójcik, K.: Relative Nielsen numbers, braids and periodic segments. Adv. Nonlinear Stud. 17 (2017), no. 3, 527–550. | DOI | MR

Cité par Sources :