Solutions of an advance-delay differential equation and their asymptotic behaviour
Archivum mathematicum, Tome 59 (2023) no. 1, pp. 141-149
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The paper considers a scalar differential equation of an advance-delay type \begin{equation*} \dot{y}(t)= -\left(a_0+\frac{a_1}{t}\right)y(t-\tau )+\left(b_0+\frac{b_1}{t}\right)y(t+\sigma )\,, \end{equation*} where constants $a_0$, $b_0$, $\tau $ and $\sigma $ are positive, and $a_1$ and $b_1$ are arbitrary. The behavior of its solutions for $t\rightarrow \infty $ is analyzed provided that the transcendental equation \begin{equation*} \lambda = -a_0\mathrm{e}^{-\lambda \tau }+b_0\mathrm{e}^{\lambda \sigma } \end{equation*} has a positive real root. An exponential-type function approximating the solution is searched for to be used in proving the existence of a semi-global solution. Moreover, the lower and upper estimates are given for such a solution.
DOI :
10.5817/AM2023-1-141
Classification :
34K12, 34K25
Keywords: advance-delay differential equation; mixed-type differential equation; asymptotic behaviour; existence of solutions
Keywords: advance-delay differential equation; mixed-type differential equation; asymptotic behaviour; existence of solutions
@article{10_5817_AM2023_1_141,
author = {V\'a\v{z}anov\'a, Gabriela},
title = {Solutions of an advance-delay differential equation and their asymptotic behaviour},
journal = {Archivum mathematicum},
pages = {141--149},
publisher = {mathdoc},
volume = {59},
number = {1},
year = {2023},
doi = {10.5817/AM2023-1-141},
mrnumber = {4563025},
zbl = {07675583},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-141/}
}
TY - JOUR AU - Vážanová, Gabriela TI - Solutions of an advance-delay differential equation and their asymptotic behaviour JO - Archivum mathematicum PY - 2023 SP - 141 EP - 149 VL - 59 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-141/ DO - 10.5817/AM2023-1-141 LA - en ID - 10_5817_AM2023_1_141 ER -
%0 Journal Article %A Vážanová, Gabriela %T Solutions of an advance-delay differential equation and their asymptotic behaviour %J Archivum mathematicum %D 2023 %P 141-149 %V 59 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-141/ %R 10.5817/AM2023-1-141 %G en %F 10_5817_AM2023_1_141
Vážanová, Gabriela. Solutions of an advance-delay differential equation and their asymptotic behaviour. Archivum mathematicum, Tome 59 (2023) no. 1, pp. 141-149. doi: 10.5817/AM2023-1-141
Cité par Sources :