Keywords: Riemann-Liouville derivative; unique solvability; differential inequality
@article{10_5817_AM2023_1_117,
author = {Srivastava, Satyam Narayan and Domoshnitsky, Alexander and Padhi, Seshadev and Raichik, Vladimir},
title = {Unique solvability of fractional functional differential equation on the basis of {Vall\'ee-Poussin} theorem},
journal = {Archivum mathematicum},
pages = {117--123},
year = {2023},
volume = {59},
number = {1},
doi = {10.5817/AM2023-1-117},
mrnumber = {4563022},
zbl = {07675580},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-117/}
}
TY - JOUR AU - Srivastava, Satyam Narayan AU - Domoshnitsky, Alexander AU - Padhi, Seshadev AU - Raichik, Vladimir TI - Unique solvability of fractional functional differential equation on the basis of Vallée-Poussin theorem JO - Archivum mathematicum PY - 2023 SP - 117 EP - 123 VL - 59 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-117/ DO - 10.5817/AM2023-1-117 LA - en ID - 10_5817_AM2023_1_117 ER -
%0 Journal Article %A Srivastava, Satyam Narayan %A Domoshnitsky, Alexander %A Padhi, Seshadev %A Raichik, Vladimir %T Unique solvability of fractional functional differential equation on the basis of Vallée-Poussin theorem %J Archivum mathematicum %D 2023 %P 117-123 %V 59 %N 1 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-117/ %R 10.5817/AM2023-1-117 %G en %F 10_5817_AM2023_1_117
Srivastava, Satyam Narayan; Domoshnitsky, Alexander; Padhi, Seshadev; Raichik, Vladimir. Unique solvability of fractional functional differential equation on the basis of Vallée-Poussin theorem. Archivum mathematicum, Tome 59 (2023) no. 1, pp. 117-123. doi: 10.5817/AM2023-1-117
[1] Agarwal, R.P., Bohner, M., Özbekler, A.: Lyapunov Inequalities and Applications. Springer, Berlin, 2021. | MR
[2] Azbelev, N.V., Maksimov, V.P., Rakhmatullina, L.F.: Introduction to the Theory of Functional Differential Equations. Hindawi Publishing, 2007. | MR
[3] Benmezai, A., Saadi, A.: Existence of positive solutions for a nonlinear fractional differential equations with integral boundary conditions. J. Fract. Calc. Appl. 7 (2) (2016), 145–152. | MR
[4] Domoshnitsky, A., Padhi, S., Srivastava, S.N.: Vallée-Poussin theorem for fractional functional differential equations. Fract. Calc. Appl. Anal. 25 (2022), 1630–1650, | DOI | MR
[5] Ferreira, R.: A Lyapunov-type inequality for a fractional boundary value problem. Fract. Calc. Appl. Anal. 16 (4) (2013), 978–984, | DOI | MR
[6] Ferreira, R.A.: Existence and uniqueness of solutions for two-point fractional boundary value problems. Electron. J. Differential Equations 202 (5) (2016). | MR
[7] Henderson, J., Luca, R.: Boundary Value Problems for Systems of Differential, Difference and Fractional Equations: Positive Solutions. Academic Press, 2015. | MR
[8] Henderson, J., Luca, R.: Nonexistence of positive solutions for a system of coupled fractional boundary value problems. Bound. Value Probl. 2015 (1) (2015), 1–12. | MR
[9] Henderson, J., Luca, R.: Positive solutions for a system of semipositone coupled fractional boundary value problems. Bound. Value Probl. 2016 (1) (2016), 1–23. | MR
[10] Jankowski, T.: Positive solutions to fractional differential equations involving Stieltjes integral conditions. Appl. Math. Comput. 241 (2014), 200–213. | DOI | MR
[11] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, 2006. | MR | Zbl
[12] Krasnosel’skii, M.A., Vainikko, G.M., Zabreyko, R.P., Ruticki, Y.B., Stet’senko, V.V.: Approximate Solution of Operator Equations. Springer Science & Business Media, 2012.
[13] Padhi, S., Graef, J.R., Pati, S.: Multiple positive solutions for a boundary value problem with nonlinear nonlocal Riemann-Stieltjes integral boundary conditions. Fract. Calc. Appl. Anal. 21 (3) (2018), 716–745, | DOI | MR
[14] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, 1999. | Zbl
[15] Qiao, Y., Zhou, Z.: Existence of positive solutions of singular fractional differential equations with infinite-point boundary conditions. Adv. Difference Equations 2017 (1) (2017), 1–9. | MR
Cité par Sources :