General exact solvability conditions for the initial value problems for linear fractional functional differential equations
Archivum mathematicum, Tome 59 (2023) no. 1, pp. 11-19
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Conditions on the unique solvability of linear fractional functional differential equations are established. A pantograph-type model from electrodynamics is studied.
DOI :
10.5817/AM2023-1-11
Classification :
26A33, 34A08, 34B15
Keywords: fractional order functional differential equations; Caputo derivative; normal and reproducing cone; unique solvability
Keywords: fractional order functional differential equations; Caputo derivative; normal and reproducing cone; unique solvability
@article{10_5817_AM2023_1_11,
author = {Dilna, Natalia},
title = {General exact solvability conditions for the initial value problems for linear fractional functional differential equations},
journal = {Archivum mathematicum},
pages = {11--19},
publisher = {mathdoc},
volume = {59},
number = {1},
year = {2023},
doi = {10.5817/AM2023-1-11},
mrnumber = {4563012},
zbl = {07675570},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-11/}
}
TY - JOUR AU - Dilna, Natalia TI - General exact solvability conditions for the initial value problems for linear fractional functional differential equations JO - Archivum mathematicum PY - 2023 SP - 11 EP - 19 VL - 59 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-11/ DO - 10.5817/AM2023-1-11 LA - en ID - 10_5817_AM2023_1_11 ER -
%0 Journal Article %A Dilna, Natalia %T General exact solvability conditions for the initial value problems for linear fractional functional differential equations %J Archivum mathematicum %D 2023 %P 11-19 %V 59 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-11/ %R 10.5817/AM2023-1-11 %G en %F 10_5817_AM2023_1_11
Dilna, Natalia. General exact solvability conditions for the initial value problems for linear fractional functional differential equations. Archivum mathematicum, Tome 59 (2023) no. 1, pp. 11-19. doi: 10.5817/AM2023-1-11
Cité par Sources :