General exact solvability conditions for the initial value problems for linear fractional functional differential equations
Archivum mathematicum, Tome 59 (2023) no. 1, pp. 11-19 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Conditions on the unique solvability of linear fractional functional differential equations are established. A pantograph-type model from electrodynamics is studied.
Conditions on the unique solvability of linear fractional functional differential equations are established. A pantograph-type model from electrodynamics is studied.
DOI : 10.5817/AM2023-1-11
Classification : 26A33, 34A08, 34B15
Keywords: fractional order functional differential equations; Caputo derivative; normal and reproducing cone; unique solvability
@article{10_5817_AM2023_1_11,
     author = {Dilna, Natalia},
     title = {General exact solvability conditions for the initial value problems for linear fractional functional differential equations},
     journal = {Archivum mathematicum},
     pages = {11--19},
     year = {2023},
     volume = {59},
     number = {1},
     doi = {10.5817/AM2023-1-11},
     mrnumber = {4563012},
     zbl = {07675570},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-11/}
}
TY  - JOUR
AU  - Dilna, Natalia
TI  - General exact solvability conditions for the initial value problems for linear fractional functional differential equations
JO  - Archivum mathematicum
PY  - 2023
SP  - 11
EP  - 19
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-11/
DO  - 10.5817/AM2023-1-11
LA  - en
ID  - 10_5817_AM2023_1_11
ER  - 
%0 Journal Article
%A Dilna, Natalia
%T General exact solvability conditions for the initial value problems for linear fractional functional differential equations
%J Archivum mathematicum
%D 2023
%P 11-19
%V 59
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-11/
%R 10.5817/AM2023-1-11
%G en
%F 10_5817_AM2023_1_11
Dilna, Natalia. General exact solvability conditions for the initial value problems for linear fractional functional differential equations. Archivum mathematicum, Tome 59 (2023) no. 1, pp. 11-19. doi: 10.5817/AM2023-1-11

[1] Aphithana, A., Ntouyas, S.K., Tariboon, J.: Existence and uniqueness of symmetric solutions for fractional differential equations with multi-point fractional integral conditions. Bound. Value Probl. 2015 (68) (2015), 14 pp., | DOI | MR

[2] Diethelm, K.: The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, 2010. | MR | Zbl

[3] Dilna, N.: Exact solvability conditions for the model with a discrete memory effect. International Conference on Mathematical Analysis and Applications in Science and Engineering, Book of Extended Abstracts, 2022, 405–407 pp.

[4] Dilna, N., Fečkan, M.: Exact solvability conditions for the non-local initial value problem for systems of linear fractional functional differential equations. Mathematics 10 (10) (2022), 1759, | DOI | MR

[5] Dilna, N., Gromyak, M., Leshchuk, S.: Unique solvability of the boundary value problems for nonlinear fractional functional differential equations. J. Math. Sci. 265 (2022), 577–588, | DOI | MR

[6] Fečkan, M., Marynets, K.: Approximation approach to periodic BVP for fractional differential systems. The European Physical Journal Special Topics 226 (2017), 3681–3692, | DOI

[7] Fečkan, M., Wang, J.R., Pospíšil, M.: Fractional-Order Equations and Inclusions. 1st. ed., Walter de Gruyter GmbH, Berlin, Boston, 2017.

[8] Gautam, G.R., Dabas, J.: A study on existence of solutions for fractional functional differential equations. Collect. Math 69 (2018), 25–37. | DOI | MR

[9] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier B.P., 2006. | MR | Zbl

[10] Opluštil, Z.: New solvability conditions for a non-local boundary value problem for nonlinear functional-differential equations. Nonlinear Oscil. 11 (3) (2008), 365–386. | DOI | MR

[11] Patade, J., Bhalekar, S.: Analytical solution of pantograph equation with incommensurate delay. Phys. Sci. Rev. Inform. 9 (2017), 20165103 | DOI

[12] Reed, M., Simon, B.: Methods of modern mathematical physics. Acad. Press, New York-London, 1972.

[13] Rontó, A., Rontó, M.: Successive Approximation Techniques in Non-Linear Boundary Value Problems. Handbook of Differential Equations: Ordinary Differential Equations, Elsevier, New York, 2009, pp. 441–592. | MR

[14] Šremr, J.: Solvability conditions of the Cauchy problem for two-dimensional systems of linear functional differential equations with monotone operators. Math. Bohem. 132 (2007), 263–295. | DOI | MR

Cité par Sources :