General exact solvability conditions for the initial value problems for linear fractional functional differential equations
Archivum mathematicum, Tome 59 (2023) no. 1, pp. 11-19.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Conditions on the unique solvability of linear fractional functional differential equations are established. A pantograph-type model from electrodynamics is studied.
DOI : 10.5817/AM2023-1-11
Classification : 26A33, 34A08, 34B15
Keywords: fractional order functional differential equations; Caputo derivative; normal and reproducing cone; unique solvability
@article{10_5817_AM2023_1_11,
     author = {Dilna, Natalia},
     title = {General exact solvability conditions for the initial value problems for linear fractional functional differential equations},
     journal = {Archivum mathematicum},
     pages = {11--19},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {2023},
     doi = {10.5817/AM2023-1-11},
     mrnumber = {4563012},
     zbl = {07675570},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-11/}
}
TY  - JOUR
AU  - Dilna, Natalia
TI  - General exact solvability conditions for the initial value problems for linear fractional functional differential equations
JO  - Archivum mathematicum
PY  - 2023
SP  - 11
EP  - 19
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-11/
DO  - 10.5817/AM2023-1-11
LA  - en
ID  - 10_5817_AM2023_1_11
ER  - 
%0 Journal Article
%A Dilna, Natalia
%T General exact solvability conditions for the initial value problems for linear fractional functional differential equations
%J Archivum mathematicum
%D 2023
%P 11-19
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-11/
%R 10.5817/AM2023-1-11
%G en
%F 10_5817_AM2023_1_11
Dilna, Natalia. General exact solvability conditions for the initial value problems for linear fractional functional differential equations. Archivum mathematicum, Tome 59 (2023) no. 1, pp. 11-19. doi : 10.5817/AM2023-1-11. http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-11/

Cité par Sources :