Around certain critical cases in stability studies in hydraulic engineering
Archivum mathematicum, Tome 59 (2023) no. 1, pp. 109-116 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is considered the mathematical model of a benchmark hydroelectric power plant containing a water reservoir (lake), two water conduits (the tunnel and the turbine penstock), the surge tank and the hydraulic turbine; all distributed (Darcy-Weisbach) and local hydraulic losses are neglected,the only energy dissipator remains the throttling of the surge tank. Exponential stability would require asymptotic stability of the difference operator associated to the model. However in this case this stability is “fragile” i.e. it holds only for a rational ratio of the two delays, with odd numerator and denominator also. Otherwise this stability is critical (non-asymptotic and displaying an oscillatory mode).
It is considered the mathematical model of a benchmark hydroelectric power plant containing a water reservoir (lake), two water conduits (the tunnel and the turbine penstock), the surge tank and the hydraulic turbine; all distributed (Darcy-Weisbach) and local hydraulic losses are neglected,the only energy dissipator remains the throttling of the surge tank. Exponential stability would require asymptotic stability of the difference operator associated to the model. However in this case this stability is “fragile” i.e. it holds only for a rational ratio of the two delays, with odd numerator and denominator also. Otherwise this stability is critical (non-asymptotic and displaying an oscillatory mode).
DOI : 10.5817/AM2023-1-109
Classification : 34D20, 34K20, 34K40, 35L50
Keywords: neutral functional differential equations; energy Lyapunov functional; asymptotic stability; water hammer
@article{10_5817_AM2023_1_109,
     author = {Rasvan, Vladimir},
     title = {Around certain critical cases in stability studies in hydraulic engineering},
     journal = {Archivum mathematicum},
     pages = {109--116},
     year = {2023},
     volume = {59},
     number = {1},
     doi = {10.5817/AM2023-1-109},
     mrnumber = {4563021},
     zbl = {07675579},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-109/}
}
TY  - JOUR
AU  - Rasvan, Vladimir
TI  - Around certain critical cases in stability studies in hydraulic engineering
JO  - Archivum mathematicum
PY  - 2023
SP  - 109
EP  - 116
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-109/
DO  - 10.5817/AM2023-1-109
LA  - en
ID  - 10_5817_AM2023_1_109
ER  - 
%0 Journal Article
%A Rasvan, Vladimir
%T Around certain critical cases in stability studies in hydraulic engineering
%J Archivum mathematicum
%D 2023
%P 109-116
%V 59
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-109/
%R 10.5817/AM2023-1-109
%G en
%F 10_5817_AM2023_1_109
Rasvan, Vladimir. Around certain critical cases in stability studies in hydraulic engineering. Archivum mathematicum, Tome 59 (2023) no. 1, pp. 109-116. doi: 10.5817/AM2023-1-109

[1] Abolinia, V.E., Myshkis, A.D.: Mixed problem for an almost linear hyperbolic system in the plane. Mat. Sb. (N.S.) 50(92) (4) (1960), 423–442, (Russian).

[2] Aronovich, G.V., Kartvelishvili, N.A., Lyubimtsev, Ya.K.: Water hammer and surge tanks. Nauka, Moscow USSR, 1968, (Russian).

[3] Cooke, K.L.: A linear mixed problem with derivative boundary conditions. Seminar on Differential Equations and Dynamical Systems (III), University of Maryland, College Park, 1970.

[4] Escande, L., Dat, J., Piquemal, J.: Stabilité d’une chambre d’équilibre placée à la jonction de deux galeries alimentées par des lacs situés à la même cote. C.R. Acad. Sci. Paris 261 (1965), 2579–2581.

[5] Halanay, A., Popescu, M.: Une propriété arithmétique dans l’analyse du comportement d’un systéme hydraulique comprenant une chambre d’équilibre avec étranglement. C.R. Acad. Sci. Paris Série II 305 (15) (1987), 1227–1230.

[6] Hale, J.K.: Dynamical systems and stability. J. Math. Anal. Appl. 26 (1969), 39–69. | DOI

[7] Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. vol. 99, Applied Mathematical Sciences, Springer-Verlag, New York, 1993. | Zbl

[8] Haraux, A.: Systémes dynamiques dissipatifs et applications. Recherches en Mathématiques appliquées, vol. 17, Masson, Paris, 1991.

[9] Răsvan, V.: Augmented Validation and a Stabilization Approach for Systems with Propagation. Systems Theory: Perspectives, Applications and Developments, Nova Science Publishers, New York, 2014.

[10] Răsvan, V.: Critical cases in neutral functional differential equations, arising from hydraulic engineering. Opuscula Math. 42 (4) (2022), 605–633. | DOI | MR

[11] Răsvan, V.: Stability results for the functional differential equations associated to water hammer in hydraulics. Electron. J. Qual. Theory Differ. Equ. 19 (2022), 1–32. | DOI | MR

[12] Saperstone, S.H.: Semidynamical Systems in Infinite Dimensional Spaces. vol. 37, Applied Mathematical Sciences, Springer, New York-Heidelberg-Berlin, 1981.

Cité par Sources :