Keywords: neutral functional differential equations; energy Lyapunov functional; asymptotic stability; water hammer
@article{10_5817_AM2023_1_109,
author = {Rasvan, Vladimir},
title = {Around certain critical cases in stability studies in hydraulic engineering},
journal = {Archivum mathematicum},
pages = {109--116},
year = {2023},
volume = {59},
number = {1},
doi = {10.5817/AM2023-1-109},
mrnumber = {4563021},
zbl = {07675579},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-109/}
}
TY - JOUR AU - Rasvan, Vladimir TI - Around certain critical cases in stability studies in hydraulic engineering JO - Archivum mathematicum PY - 2023 SP - 109 EP - 116 VL - 59 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-1-109/ DO - 10.5817/AM2023-1-109 LA - en ID - 10_5817_AM2023_1_109 ER -
Rasvan, Vladimir. Around certain critical cases in stability studies in hydraulic engineering. Archivum mathematicum, Tome 59 (2023) no. 1, pp. 109-116. doi: 10.5817/AM2023-1-109
[1] Abolinia, V.E., Myshkis, A.D.: Mixed problem for an almost linear hyperbolic system in the plane. Mat. Sb. (N.S.) 50(92) (4) (1960), 423–442, (Russian).
[2] Aronovich, G.V., Kartvelishvili, N.A., Lyubimtsev, Ya.K.: Water hammer and surge tanks. Nauka, Moscow USSR, 1968, (Russian).
[3] Cooke, K.L.: A linear mixed problem with derivative boundary conditions. Seminar on Differential Equations and Dynamical Systems (III), University of Maryland, College Park, 1970.
[4] Escande, L., Dat, J., Piquemal, J.: Stabilité d’une chambre d’équilibre placée à la jonction de deux galeries alimentées par des lacs situés à la même cote. C.R. Acad. Sci. Paris 261 (1965), 2579–2581.
[5] Halanay, A., Popescu, M.: Une propriété arithmétique dans l’analyse du comportement d’un systéme hydraulique comprenant une chambre d’équilibre avec étranglement. C.R. Acad. Sci. Paris Série II 305 (15) (1987), 1227–1230.
[6] Hale, J.K.: Dynamical systems and stability. J. Math. Anal. Appl. 26 (1969), 39–69. | DOI
[7] Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. vol. 99, Applied Mathematical Sciences, Springer-Verlag, New York, 1993. | Zbl
[8] Haraux, A.: Systémes dynamiques dissipatifs et applications. Recherches en Mathématiques appliquées, vol. 17, Masson, Paris, 1991.
[9] Răsvan, V.: Augmented Validation and a Stabilization Approach for Systems with Propagation. Systems Theory: Perspectives, Applications and Developments, Nova Science Publishers, New York, 2014.
[10] Răsvan, V.: Critical cases in neutral functional differential equations, arising from hydraulic engineering. Opuscula Math. 42 (4) (2022), 605–633. | DOI | MR
[11] Răsvan, V.: Stability results for the functional differential equations associated to water hammer in hydraulics. Electron. J. Qual. Theory Differ. Equ. 19 (2022), 1–32. | DOI | MR
[12] Saperstone, S.H.: Semidynamical Systems in Infinite Dimensional Spaces. vol. 37, Applied Mathematical Sciences, Springer, New York-Heidelberg-Berlin, 1981.
Cité par Sources :