Pseudo-Riemannian and Hessian geometry related to Monge-Ampère structures
Archivum mathematicum, Tome 58 (2022) no. 5, pp. 329-338 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study properties of pseudo-Riemannian metrics corresponding to Monge-Ampère structures on four dimensional $T^*M$. We describe a family of Ricci flat solutions, which are parametrized by six coefficients satisfying the Plücker embedding equation. We also focus on pullbacks of the pseudo-metrics on two dimensional $M$, and describe the corresponding Hessian structures.
We study properties of pseudo-Riemannian metrics corresponding to Monge-Ampère structures on four dimensional $T^*M$. We describe a family of Ricci flat solutions, which are parametrized by six coefficients satisfying the Plücker embedding equation. We also focus on pullbacks of the pseudo-metrics on two dimensional $M$, and describe the corresponding Hessian structures.
DOI : 10.5817/AM2022-5-329
Classification : 53B20, 83C15
Keywords: Hessian structure; Lychagin-Rubtsov metric; Monge-Ampère structure; Monge-Ampère equation; Plücker embedding
@article{10_5817_AM2022_5_329,
     author = {Hronek, S. and Such\'anek, R.},
     title = {Pseudo-Riemannian and {Hessian} geometry related to {Monge-Amp\`ere} structures},
     journal = {Archivum mathematicum},
     pages = {329--338},
     year = {2022},
     volume = {58},
     number = {5},
     doi = {10.5817/AM2022-5-329},
     mrnumber = {4529822},
     zbl = {07655751},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-5-329/}
}
TY  - JOUR
AU  - Hronek, S.
AU  - Suchánek, R.
TI  - Pseudo-Riemannian and Hessian geometry related to Monge-Ampère structures
JO  - Archivum mathematicum
PY  - 2022
SP  - 329
EP  - 338
VL  - 58
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-5-329/
DO  - 10.5817/AM2022-5-329
LA  - en
ID  - 10_5817_AM2022_5_329
ER  - 
%0 Journal Article
%A Hronek, S.
%A Suchánek, R.
%T Pseudo-Riemannian and Hessian geometry related to Monge-Ampère structures
%J Archivum mathematicum
%D 2022
%P 329-338
%V 58
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-5-329/
%R 10.5817/AM2022-5-329
%G en
%F 10_5817_AM2022_5_329
Hronek, S.; Suchánek, R. Pseudo-Riemannian and Hessian geometry related to Monge-Ampère structures. Archivum mathematicum, Tome 58 (2022) no. 5, pp. 329-338. doi: 10.5817/AM2022-5-329

[1] Amari, S., Armstrong, J.: Curvature of Hessian manifolds. Differential Geom. Appl. 33 (2014), 1–12. | DOI | MR

[2] Banos, B.: Integrable geometries and Monge-Ampèere equations. arXiv: Differential Geometry (2006).

[3] Banos, B.: Monge-Ampère equations and generalized complex geometry –the two-dimensional case. J. Geom. Phys. 57 (3) (2007), 841–853. | DOI | MR

[4] Banos, B.: Complex solutions of Monge-Ampère equations. J. Geom. Phys. 61 (2011), no. 11, 2187–2198. | DOI | MR

[5] Banos, B.: Complex solutions of Monge-Ampère equations. J. Geom. Phys. 61 (2011), no. 11, 2187–2198. | DOI | MR

[6] Banos, B., Rubtsov, V., Roulstone, I.: Monge–Ampère structures and the geometry of incompressible flows. J. Phys A 49 (2016). | DOI | MR

[7] Delahaies, S.: Complex and contact geometry in geophysical fluid dynamics. Ph.D. thesis, 01 2009. | MR

[8] Kosmann-Schwarzbach, Y., Rubtsov, V.: Compatible structures on Lie algebroids and Monge-Ampère operators. Acta Appl. Math. 109 (2010), no. 1, 101–135. | DOI | MR

[9] Kushner, A., Lychagin, V., Rubtsov, V.: Contact geometry and nonlinear differential equations. Encyclopedia Math. Appl., Cambridge University Press, 2006. | MR

[10] Lychagin, V.V.: Contact geometry and non-llnear second-order differential equations. Russian Math. Surveys 34 (1979), no. 1, 149–180. | DOI | MR

[11] Lychagin, V.V., Roubtsov, V.: Monge–Ampère Grassmannians, characteristic classes and all that. pp. 233–257, Springer International Publishing, Cham, 2019. | MR

[12] Lychagin, V.V., Rubtsov, V.N., Chekalov, I.V.: A classification of Monge-Ampère equations. Ann. Sci. Éc. Norm. Supér. (4) Ser. 4, 26 (1993), no. 3, 281–308 (en). MR 94c:58229 | MR

[13] Roulstone, I., Banos, B., Gibbon, J.D., Roubtsov, V.N.: Kähler geometry and Burgers’ vortices. (2009).

[14] Rubtsov, V., Roulstone, I.: Holomorphic structures in hydrodynamical models of nearly geostrophic flow. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), 1519–1531. | DOI | MR

[15] Rubtsov, V. N., Roulstone, I.: Examples of quaternionic and Kähler structures in Hamiltonian models of nearly geostrophic flow. J. Phys. A 30 (1997), no. 4, L63–L68. | DOI | MR

[16] Rubtsov, Volodya: Geometry of Monge-Ampère structures. pp. 95–156, Springer International Publishing, Cham, 2019. | MR

[17] Shima, Hirohiko: The geometry of Hessian structures. World Scientific, 2007. | MR

[18] Totaro, B.: The curvature of a Hessian metric. Internat. J. Math. 15 (2004), no. 04, 369–391. | DOI | MR

Cité par Sources :