Pseudo-Riemannian and Hessian geometry related to Monge-Ampère structures
Archivum mathematicum, Tome 58 (2022) no. 5, pp. 329-338
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We study properties of pseudo-Riemannian metrics corresponding to Monge-Ampère structures on four dimensional $T^*M$. We describe a family of Ricci flat solutions, which are parametrized by six coefficients satisfying the Plücker embedding equation. We also focus on pullbacks of the pseudo-metrics on two dimensional $M$, and describe the corresponding Hessian structures.
We study properties of pseudo-Riemannian metrics corresponding to Monge-Ampère structures on four dimensional $T^*M$. We describe a family of Ricci flat solutions, which are parametrized by six coefficients satisfying the Plücker embedding equation. We also focus on pullbacks of the pseudo-metrics on two dimensional $M$, and describe the corresponding Hessian structures.
DOI :
10.5817/AM2022-5-329
Classification :
53B20, 83C15
Keywords: Hessian structure; Lychagin-Rubtsov metric; Monge-Ampère structure; Monge-Ampère equation; Plücker embedding
Keywords: Hessian structure; Lychagin-Rubtsov metric; Monge-Ampère structure; Monge-Ampère equation; Plücker embedding
@article{10_5817_AM2022_5_329,
author = {Hronek, S. and Such\'anek, R.},
title = {Pseudo-Riemannian and {Hessian} geometry related to {Monge-Amp\`ere} structures},
journal = {Archivum mathematicum},
pages = {329--338},
year = {2022},
volume = {58},
number = {5},
doi = {10.5817/AM2022-5-329},
mrnumber = {4529822},
zbl = {07655751},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-5-329/}
}
TY - JOUR AU - Hronek, S. AU - Suchánek, R. TI - Pseudo-Riemannian and Hessian geometry related to Monge-Ampère structures JO - Archivum mathematicum PY - 2022 SP - 329 EP - 338 VL - 58 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-5-329/ DO - 10.5817/AM2022-5-329 LA - en ID - 10_5817_AM2022_5_329 ER -
Hronek, S.; Suchánek, R. Pseudo-Riemannian and Hessian geometry related to Monge-Ampère structures. Archivum mathematicum, Tome 58 (2022) no. 5, pp. 329-338. doi: 10.5817/AM2022-5-329
Cité par Sources :