Keywords: sub-Riemannian geometry; equivalence problem; frame bundle; Cartan connection; flatness theorem
@article{10_5817_AM2022_5_295,
author = {Grong, Erlend},
title = {Curvature and the equivalence problem in {sub-Riemannian} geometry},
journal = {Archivum mathematicum},
pages = {295--327},
year = {2022},
volume = {58},
number = {5},
doi = {10.5817/AM2022-5-295},
mrnumber = {4529821},
zbl = {07655750},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-5-295/}
}
Grong, Erlend. Curvature and the equivalence problem in sub-Riemannian geometry. Archivum mathematicum, Tome 58 (2022) no. 5, pp. 295-327. doi: 10.5817/AM2022-5-295
[1] Agrachev, A., Barilari, D., Boscain, U.: A comprehensive introduction to sub-Riemannian geometry. Cambridge Stud. Adv. Math., vol. 181, Cambridge University Press, Cambridge, 2020. | MR
[2] Alekseevsky, D., Medvedev, A., Slovák, J.: Constant curvature models in sub-Riemannian geometry. J. Geom. Phys. 138 (2019), 241–256. | DOI | MR
[3] Bellaïche, A.: The tangent space in sub-Riemannian geometry. Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 1–78. | MR | Zbl
[4] Capogna, L., Le Donne, E.: Smoothness of subRiemannian isometries. Amer. J. Math. 138 (2016), no. 5, 1439–1454. | DOI | MR | Zbl
[5] Godoy Molina, M., Grong, E., Markina, I., Silva Leite, F.: An intrinsic formulation of the problem on rolling manifolds. J. Dyn. Control Syst. 18 (2012), no. 2, 181–214. | DOI | MR
[6] Gromov, M.: Carnot-Carathéodory spaces seen from within. Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 79–323. | MR | Zbl
[7] Grong, E.: Controllability of rolling without twisting or slipping in higher dimensions. SIAM J. Control Optim. 50 (2012), no. 4, 2462–2485. | DOI | MR
[8] Grong, E.: Canonical connections on sub-Riemannian manifolds with constant symbol. arXiv preprint arXiv:2010.05366 (2020).
[9] Le Donne, E., Ottazzi, A.: Isometries of Carnot groups and sub-Finsler homogeneous manifolds. J. Geom. Anal. 26 (2016), no. 1, 330–345. | DOI | MR | Zbl
[10] Lee, J.M.: Riemannian manifolds. Grad. Texts in Math., vol. 176, Springer-Verlag, New York, 1997, An introduction to curvature. | MR
[11] Lee, J.M.: Introduction to smooth manifolds. second ed., Graduate Texts in Mathematics, vol. 218, Springer, New York, 2013. | MR
[12] Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications. Math. Surveys Monogr., vol. 91, American Mathematical Society, Providence, RI, 2002. | MR | Zbl
[13] Morimoto, T.: Geometric structures on filtered manifolds. Hokkaido Math. J. 22 (1993), no. 3, 263–347. | DOI | MR | Zbl
[14] Morimoto, T.: Cartan connection associated with a subriemannian structure. Differential Geom. Appl. 26 (2008), no. 1, 75–78. | DOI | MR | Zbl
[15] Sharpe, R.W.: Differential geometry. Grad. Texts in Math., vol. 166, Springer-Verlag, New York, 1997, Cartan's generalization of Klein's Erlangen program, With a foreword by S. S. Chern. | MR | Zbl
[16] Strichartz, R.S.: Sub-Riemannian geometry. J. Differential Geom. 24 (1986), no. 2, 221–263. | DOI | MR | Zbl
Cité par Sources :