Keywords: polyfillability; Legendrian submanifold; exact Lagrangian filling
@article{10_5817_AM2022_5_287,
author = {Golovko, Roman},
title = {On topologically distinct infinite families of exact {Lagrangian} fillings},
journal = {Archivum mathematicum},
pages = {287--293},
year = {2022},
volume = {58},
number = {5},
doi = {10.5817/AM2022-5-287},
mrnumber = {4529820},
zbl = {07655749},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-5-287/}
}
TY - JOUR AU - Golovko, Roman TI - On topologically distinct infinite families of exact Lagrangian fillings JO - Archivum mathematicum PY - 2022 SP - 287 EP - 293 VL - 58 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-5-287/ DO - 10.5817/AM2022-5-287 LA - en ID - 10_5817_AM2022_5_287 ER -
Golovko, Roman. On topologically distinct infinite families of exact Lagrangian fillings. Archivum mathematicum, Tome 58 (2022) no. 5, pp. 287-293. doi: 10.5817/AM2022-5-287
[1] An, B.H., Bae, Y., Lee, E.: Lagrangian fillings for Legendrian links of affine type. preprint 2021, arXiv:2107.04283.
[2] An, B.H., Bae, Y., Lee, E.: Lagrangian fillings for Legendrian links of finite type. preprint 2021, arXiv:2101.01943.
[3] Cao, C., Gallup, N., Hayden, K., Sabloff, J.M.: Topologically distinct Lagrangian and symplectic fillings. Math. Res. Lett. 21 (1) (2014), 85–99. | DOI | MR
[4] Capovilla-Searle, O.: Infinitely many planar fillings and symplectic Milnor fibers. preprint 2022, arXiv:2201.03081.
[5] Casals, R., Gao, H.: Infinitely many Lagrangian fillings. Ann. of Math. 195 (1) (2022), 207–249. | DOI | MR
[6] Casals, R., Ng, L.: Braid Loops with infinite monodromy on the Legendrian contact DGA. J. Topol. 15 (4) (2022), 1927–2016. | DOI
[7] Casals, R., Zaslow, E.: Legendrian weaves. preprint 2020, arXiv:2007.04943.
[8] Chantraine, B.: On Lagrangian concordance of Legendrian knots. Algebr. Geom. Topol. 10 (2010), 63–85. | DOI | MR
[9] Chantraine, B., Rizell, G. Dimitroglou, Ghiggini, P., Golovko, R.: Floer theory for Lagrangian cobordisms. J. Differential Geom. 114 (3) (2020), 393–465. | DOI | MR
[10] Dimitroglou Rizell, G.: Legendrian ambient surgery and Legendrian contact homology. J. Symplectic Geom. 14 (3) (2016), 811–901. | DOI | MR
[11] Ekholm, T.: Morse flow trees and Legendrian contact homology in 1-jet spaces. Geom. Topol. 11 (2007), 1083–1224. | DOI | MR
[12] Ekholm, T.: Rational symplectic field theory over$\mathbb{Z}_2$ for exact Lagrangian cobordisms. J. Eur. Math. Soc. 10 (3) (2008), 641–704. | DOI | MR
[13] Ekholm, T., Etnyre, J., Sullivan, M.: Non-isotopic Legendrian submanifolds in $\mathbb{R}^{2n+1}$. J. Differential Geom. 71 (2005), 85–128. | DOI | MR
[14] Ekholm, T., Honda, K., Kálmán, T.: Legendrian knots and exact Lagrangian cobordisms. J. Eur. Math. Soc. (JEMS) 18 (11) (2016), 2627–2689. | DOI | MR
[15] Eliashberg, Y., Givental, A., Hofer, H.: Introduction to symplectic field theory. Geom. Funct. Anal. Special Volume 10 (2000), 560–673. | MR
[16] Gao, H., Shen, L., Weng, D.: Augmentations, fillings, and clusters. preprint 2020, arXiv:2008.10793.
[17] Gao, H., Shen, L., Weng, D.: Positive braid links with infinitely many fillings. preprint 2020, arXiv:2009.00499.
[18] Golovko, R.: A note on the front spinning construction. Bull. Lond. Math. Soc. 46 (2) (2014), 258–268. | DOI | MR
[19] Golovko, R.: A note on the infinite number of exact Lagrangian fillings for spherical spuns. Pacific J. Math. 317 (1) (2022), 143–152. | DOI | MR
[20] Karlsson, C.: A note on coherent orientations for exact Lagrangian cobordisms. Quantum Topol. 11 (1) (2020), 1–54. | DOI | MR
[21] Pan, Y.: The augmentation category map induced by exact Lagrangian cobordisms. Algebr. Geom. Topol. 17 (3) (2017), 1813–1870. | DOI | MR
Cité par Sources :