On topologically distinct infinite families of exact Lagrangian fillings
Archivum mathematicum, Tome 58 (2022) no. 5, pp. 287-293 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this note we construct examples of closed connected Legendrian submanifolds in high dimensional contact vector space that admit an arbitrary finite number of topologically distinct infinite families of diffeomorphic, but not Hamiltonian isotopic exact Lagrangian fillings.
In this note we construct examples of closed connected Legendrian submanifolds in high dimensional contact vector space that admit an arbitrary finite number of topologically distinct infinite families of diffeomorphic, but not Hamiltonian isotopic exact Lagrangian fillings.
DOI : 10.5817/AM2022-5-287
Classification : 53D12, 53D42
Keywords: polyfillability; Legendrian submanifold; exact Lagrangian filling
@article{10_5817_AM2022_5_287,
     author = {Golovko, Roman},
     title = {On topologically distinct infinite families of exact {Lagrangian} fillings},
     journal = {Archivum mathematicum},
     pages = {287--293},
     year = {2022},
     volume = {58},
     number = {5},
     doi = {10.5817/AM2022-5-287},
     mrnumber = {4529820},
     zbl = {07655749},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-5-287/}
}
TY  - JOUR
AU  - Golovko, Roman
TI  - On topologically distinct infinite families of exact Lagrangian fillings
JO  - Archivum mathematicum
PY  - 2022
SP  - 287
EP  - 293
VL  - 58
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-5-287/
DO  - 10.5817/AM2022-5-287
LA  - en
ID  - 10_5817_AM2022_5_287
ER  - 
%0 Journal Article
%A Golovko, Roman
%T On topologically distinct infinite families of exact Lagrangian fillings
%J Archivum mathematicum
%D 2022
%P 287-293
%V 58
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-5-287/
%R 10.5817/AM2022-5-287
%G en
%F 10_5817_AM2022_5_287
Golovko, Roman. On topologically distinct infinite families of exact Lagrangian fillings. Archivum mathematicum, Tome 58 (2022) no. 5, pp. 287-293. doi: 10.5817/AM2022-5-287

[1] An, B.H., Bae, Y., Lee, E.: Lagrangian fillings for Legendrian links of affine type. preprint 2021, arXiv:2107.04283.

[2] An, B.H., Bae, Y., Lee, E.: Lagrangian fillings for Legendrian links of finite type. preprint 2021, arXiv:2101.01943.

[3] Cao, C., Gallup, N., Hayden, K., Sabloff, J.M.: Topologically distinct Lagrangian and symplectic fillings. Math. Res. Lett. 21 (1) (2014), 85–99. | DOI | MR

[4] Capovilla-Searle, O.: Infinitely many planar fillings and symplectic Milnor fibers. preprint 2022, arXiv:2201.03081.

[5] Casals, R., Gao, H.: Infinitely many Lagrangian fillings. Ann. of Math. 195 (1) (2022), 207–249. | DOI | MR

[6] Casals, R., Ng, L.: Braid Loops with infinite monodromy on the Legendrian contact DGA. J. Topol. 15 (4) (2022), 1927–2016. | DOI

[7] Casals, R., Zaslow, E.: Legendrian weaves. preprint 2020, arXiv:2007.04943.

[8] Chantraine, B.: On Lagrangian concordance of Legendrian knots. Algebr. Geom. Topol. 10 (2010), 63–85. | DOI | MR

[9] Chantraine, B., Rizell, G. Dimitroglou, Ghiggini, P., Golovko, R.: Floer theory for Lagrangian cobordisms. J. Differential Geom. 114 (3) (2020), 393–465. | DOI | MR

[10] Dimitroglou Rizell, G.: Legendrian ambient surgery and Legendrian contact homology. J. Symplectic Geom. 14 (3) (2016), 811–901. | DOI | MR

[11] Ekholm, T.: Morse flow trees and Legendrian contact homology in 1-jet spaces. Geom. Topol. 11 (2007), 1083–1224. | DOI | MR

[12] Ekholm, T.: Rational symplectic field theory over$\mathbb{Z}_2$ for exact Lagrangian cobordisms. J. Eur. Math. Soc. 10 (3) (2008), 641–704. | DOI | MR

[13] Ekholm, T., Etnyre, J., Sullivan, M.: Non-isotopic Legendrian submanifolds in $\mathbb{R}^{2n+1}$. J. Differential Geom. 71 (2005), 85–128. | DOI | MR

[14] Ekholm, T., Honda, K., Kálmán, T.: Legendrian knots and exact Lagrangian cobordisms. J. Eur. Math. Soc. (JEMS) 18 (11) (2016), 2627–2689. | DOI | MR

[15] Eliashberg, Y., Givental, A., Hofer, H.: Introduction to symplectic field theory. Geom. Funct. Anal. Special Volume 10 (2000), 560–673. | MR

[16] Gao, H., Shen, L., Weng, D.: Augmentations, fillings, and clusters. preprint 2020, arXiv:2008.10793.

[17] Gao, H., Shen, L., Weng, D.: Positive braid links with infinitely many fillings. preprint 2020, arXiv:2009.00499.

[18] Golovko, R.: A note on the front spinning construction. Bull. Lond. Math. Soc. 46 (2) (2014), 258–268. | DOI | MR

[19] Golovko, R.: A note on the infinite number of exact Lagrangian fillings for spherical spuns. Pacific J. Math. 317 (1) (2022), 143–152. | DOI | MR

[20] Karlsson, C.: A note on coherent orientations for exact Lagrangian cobordisms. Quantum Topol. 11 (1) (2020), 1–54. | DOI | MR

[21] Pan, Y.: The augmentation category map induced by exact Lagrangian cobordisms. Algebr. Geom. Topol. 17 (3) (2017), 1813–1870. | DOI | MR

Cité par Sources :