On topologically distinct infinite families of exact Lagrangian fillings
Archivum mathematicum, Tome 58 (2022) no. 5, pp. 287-293
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this note we construct examples of closed connected Legendrian submanifolds in high dimensional contact vector space that admit an arbitrary finite number of topologically distinct infinite families of diffeomorphic, but not Hamiltonian isotopic exact Lagrangian fillings.
In this note we construct examples of closed connected Legendrian submanifolds in high dimensional contact vector space that admit an arbitrary finite number of topologically distinct infinite families of diffeomorphic, but not Hamiltonian isotopic exact Lagrangian fillings.
DOI :
10.5817/AM2022-5-287
Classification :
53D12, 53D42
Keywords: polyfillability; Legendrian submanifold; exact Lagrangian filling
Keywords: polyfillability; Legendrian submanifold; exact Lagrangian filling
@article{10_5817_AM2022_5_287,
author = {Golovko, Roman},
title = {On topologically distinct infinite families of exact {Lagrangian} fillings},
journal = {Archivum mathematicum},
pages = {287--293},
year = {2022},
volume = {58},
number = {5},
doi = {10.5817/AM2022-5-287},
mrnumber = {4529820},
zbl = {07655749},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-5-287/}
}
TY - JOUR AU - Golovko, Roman TI - On topologically distinct infinite families of exact Lagrangian fillings JO - Archivum mathematicum PY - 2022 SP - 287 EP - 293 VL - 58 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-5-287/ DO - 10.5817/AM2022-5-287 LA - en ID - 10_5817_AM2022_5_287 ER -
Golovko, Roman. On topologically distinct infinite families of exact Lagrangian fillings. Archivum mathematicum, Tome 58 (2022) no. 5, pp. 287-293. doi: 10.5817/AM2022-5-287
Cité par Sources :