Keywords: Lie superalgebras; cohomology; pseudoforms; integral forms; infinite-dimensional representations
@article{10_5817_AM2022_5_269,
author = {Cremonini, Carlo Alberto},
title = {A review of {Lie} superalgebra cohomology for pseudoforms},
journal = {Archivum mathematicum},
pages = {269--286},
year = {2022},
volume = {58},
number = {5},
doi = {10.5817/AM2022-5-269},
mrnumber = {4529819},
zbl = {07655748},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-5-269/}
}
Cremonini, Carlo Alberto. A review of Lie superalgebra cohomology for pseudoforms. Archivum mathematicum, Tome 58 (2022) no. 5, pp. 269-286. doi: 10.5817/AM2022-5-269
[1] Achúcarro, A., Evans, J.M., Townsend, P.K., Wiltshire, D.L.: Super p-branes. Phys. Lett. B 198 (4) (1987), 441–446. | DOI | MR
[2] Baranov, M.A., Schwarz, A.S.: Multiloop contribution to string theory. JETP Lett. 42 (1985), 419–421. | MR
[3] Belopolsky, A.: New geometrical approach to superstrings. [arXiv:hep-th/9703183 [hep-th]].
[4] Bernstein, I.N., Leites, D.A.: Integral forms and the Stokes formula on supermanifolds. Funkt. Anal. Pril. 11 (1977), 55. | MR
[5] Cacciatori, S.L., Noja, S., Re, R.: The unifying double complex on supermanifolds. Doc. Math. (2022), 489–518. | DOI
[6] Castellani, L., D’Auria, R., Fré, P.: Supergravity and superstrings: A Geometric perspective. Singapore: World Scientific 1, 2, 3 (1991), 1375–2162. | MR
[7] Catenacci, R., Cremonini, C.A., Grassi, P.A., Noja, S.: Cohomology of Lie superalgebras: Forms, integral forms and coset superspaces. [arXiv:2012.05246 [hep-th]]. | MR
[8] Catenacci, R., Grassi, P.A., Noja, S.: Superstring field theory, superforms and supergeometry. J. Geom. Phys. 148 (2020), 103559. | DOI | MR
[9] Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. Trans. Amer. Math. Soc. 63 (1948), 85. | DOI | MR | Zbl
[10] Cremonini, C.A., Grassi, P.A.: Generalised cocycles and super p-branes. [arXiv:2206.03394 [hep-th]].
[11] Cremonini, C.A., Grassi, P.A.: Pictures from super Chern-Simons theory. JHEP 03 (2020), 043. | DOI | MR
[12] Cremonini, C.A., Grassi, P.A.: Super Chern-Simons theory: Batalin-Vilkovisky formalism and $A_\infty $ algebras. Phys. Rev. D 102 (2) (2020), 025009. | DOI | MR
[13] Cremonini, C.A., Grassi, P.A.: Self-dual forms in supergeometry I: The chiral boson. Nuclear Phys. B 973 (2021), 115596. | MR
[14] Cremonini, C.A., Grassi, P.A., et alii, : In preparation.
[15] Duff, M.J.: The conformal brane-scan: an update. [arXiv:2112.13784 [hep-th]]. | MR
[16] Erler, T., Konopka, S., Sachs, I.: Resolving Witten’s superstring field theory. JHEP 12 (2014), 1550018. | MR
[17] Fiorenza, D., Sati, H., Schreiber, U.: Super Lie n-algebra extensions, higher WZW models, and super p-branes with tensor multiplet fields. Int. J. Geom. Methods Mod. Phys. 12 (2014), 1550018. | DOI | MR
[18] Frappat, L., Sorba, P., Sciarrino, A.: Dictionary on Lie Algebras and Superalgebras. Academic Press, 2000. | MR
[19] Friedan, D., Martinec, E.J., Shenker, S.H.: Conformal invariance, supersymmetry and string theory. Nuclear Phys. B 271 (1986), 93–165. | MR
[20] Fuks, D.: Cohomology of infinite-dimensional Lie algebras. Springer, New York, 1986. | MR | Zbl
[21] Hochschild, G., Serre, J.P.: Cohomology of Lie Aalgebras. Ann. of Math. 57 (2) (1953), 591–603. | DOI | MR
[22] Kac, V.G.: Lie superalgebras. Adv. Math. 26 (1977), 8–96. | DOI | MR | Zbl
[23] Koszul, J.L.: Homologie et cohomologie des algebres de Lie. Bull. Soc. Math. France 78 (1950), 65–127. | DOI | MR
[24] Lebedev, A., Leites, D.A., Shereshevskii, I.: Lie superalgebra structures in cohomology spaces of Lie algebras with coefficients in the adjoint representation. Amer. Math. Soc. Transl. Ser. 2 213 (2005), 157–172. | MR
[25] Lehrer, G.I., Zhang, R.B.: The first fundamental theorem of invariant theory for the orthosymplectic supergroup. Commun. Math. Phys. 349 (2) (2017), 661–702. | DOI | MR
[26] Lehrer, G.I., Zhang, R.B.: The second fundamental theorem of invariant theory for the orthosymplectic supergroup. Nagoya Math. J. 242 (2021), 52–76. | DOI | MR
[27] Leites, D.A.: Representations of Lie superalgebras. Theor. Math. Phys. 52 (1982), 764–766. | DOI | MR
[28] Manin, Y.I.: Gauge field theory and complex geometry. Springer, Berlin, 1988, Translated from the Russian by N. Koblitz and J. R. King. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 289. | MR
[29] Noja, S.: On the geometry of forms on supermanifolds. [arXiv:2111.12841 [math.AG]].
[30] Noja, S., Re, R.: A note on super Koszul complex and the Berezinian. Ann. Mat. Pura Appl. (4) 201 (2022), 403–421. | MR
[31] Ogievetskii, O.V., Penkov, I.B.: Serre duality for projective supermanifolds. Funct. Anal. Appl. 18 (1984), 68–70. | DOI | MR
[32] Penkov, I.B.: D-modules on supermanifolds. Invent. Math. 71 (1983), 501–512. | DOI | MR
[33] Scheunert, M., Zhang, R.B.: Cohomology of Lie superalgebras and of their generalizations. J. Math. Phys. 39 (1998), 5024–5061. | DOI | MR
[34] Su, Y., Zhang, R.B.: Cohomology of Lie superalgebras $sl_{m|n}$ and $osp_{2|2n}$. Proc. London Math. Soc. 94 (2007), 91–136. | MR
[35] Su, Y., Zhang, R.B.: Mixed cohomology of Lie superalgebras. J. Algebra 549 (2020), 1–29. | DOI | MR
[36] Sullivan, D.: Infinitesimal computations in topology. Publications Mathématiques de l'IHÉS 47 (1977), 269–331. | DOI | MR
[37] Verlinde, E.P., Verlinde, H.L.: Multiloop calculations in covariant superstring theory. Phys. Lett. B 192 (1987), 95–102. | DOI | MR
[38] Witten, E.: Notes on supermanifolds and integration. Pure Appl. Math. Quart. 15 (1) (2019), 3–56. | DOI | MR
Cité par Sources :