Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem
Archivum mathematicum, Tome 58 (2022) no. 4, pp. 199-211
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, by using recent results on fixed point index, we develop a new fixed point theorem of functional type for the sum of two operators $T+S$ where $I-T$ is Lipschitz invertible and $S$ a $k$-set contraction. This fixed point theorem is then used to establish a new result on the existence of positive solutions to a non-autonomous second order difference equation.
DOI :
10.5817/AM2022-4-199
Classification :
39A27, 47H10
Keywords: fixed point; sum of operators; non-autonomous difference equations; positive solution
Keywords: fixed point; sum of operators; non-autonomous difference equations; positive solution
@article{10_5817_AM2022_4_199,
author = {Bouchal, Lydia and Mebarki, Karima and Georgiev b , Svetlin Georgiev},
title = {Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem},
journal = {Archivum mathematicum},
pages = {199--211},
publisher = {mathdoc},
volume = {58},
number = {4},
year = {2022},
doi = {10.5817/AM2022-4-199},
mrnumber = {4529813},
zbl = {07655743},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-4-199/}
}
TY - JOUR AU - Bouchal, Lydia AU - Mebarki, Karima AU - Georgiev b , Svetlin Georgiev TI - Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem JO - Archivum mathematicum PY - 2022 SP - 199 EP - 211 VL - 58 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-4-199/ DO - 10.5817/AM2022-4-199 LA - en ID - 10_5817_AM2022_4_199 ER -
%0 Journal Article %A Bouchal, Lydia %A Mebarki, Karima %A Georgiev b , Svetlin Georgiev %T Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem %J Archivum mathematicum %D 2022 %P 199-211 %V 58 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-4-199/ %R 10.5817/AM2022-4-199 %G en %F 10_5817_AM2022_4_199
Bouchal, Lydia; Mebarki, Karima; Georgiev b , Svetlin Georgiev. Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem. Archivum mathematicum, Tome 58 (2022) no. 4, pp. 199-211. doi: 10.5817/AM2022-4-199
Cité par Sources :