Keywords: fixed point; sum of operators; non-autonomous difference equations; positive solution
@article{10_5817_AM2022_4_199,
author = {Bouchal, Lydia and Mebarki, Karima and Georgiev b , Svetlin Georgiev},
title = {Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem},
journal = {Archivum mathematicum},
pages = {199--211},
year = {2022},
volume = {58},
number = {4},
doi = {10.5817/AM2022-4-199},
mrnumber = {4529813},
zbl = {07655743},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-4-199/}
}
TY - JOUR AU - Bouchal, Lydia AU - Mebarki, Karima AU - Georgiev b , Svetlin Georgiev TI - Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem JO - Archivum mathematicum PY - 2022 SP - 199 EP - 211 VL - 58 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-4-199/ DO - 10.5817/AM2022-4-199 LA - en ID - 10_5817_AM2022_4_199 ER -
%0 Journal Article %A Bouchal, Lydia %A Mebarki, Karima %A Georgiev b , Svetlin Georgiev %T Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem %J Archivum mathematicum %D 2022 %P 199-211 %V 58 %N 4 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-4-199/ %R 10.5817/AM2022-4-199 %G en %F 10_5817_AM2022_4_199
Bouchal, Lydia; Mebarki, Karima; Georgiev b , Svetlin Georgiev. Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem. Archivum mathematicum, Tome 58 (2022) no. 4, pp. 199-211. doi: 10.5817/AM2022-4-199
[1] Agarwal, R.P., O’Regan, D., Wong, P.J.Y.: Positive solutions of differential, difference and integral equations. Springer Science and Business Media, 1998. | MR
[2] Anderson, D.R., Avery, R.I.: Multiple positive solutions to a third-order discrete focal boundary value problem. Comput. Math. Appl. 42 (3–5) (2001), 333–340. | DOI | MR
[3] Anderson, D.R., Avery, R.I.: Fixed point theorem of cone expansion and compression of functional type. J. Difference Equ. Appl. 8 (11) (2002), 1073–1083. | DOI | MR
[4] Anderson, D.R., Avery, R.I.: A topological proof and extension of the Leggett-Williams fixed point theorem. Commun. Appl. Nonlinear Anal. 16 (4) (2009), 39–44. | MR
[5] Anderson, D.R., Avery, R.I.: Application of the omitted ray fixed point theorem. Electron. J. Qual. Theory Differ. Equ. 2014 (17) (2014), 1–9. | DOI | MR
[6] Anderson, D.R., Avery, R.I., Henderson, J.: Some Fixed point theorems of Leggett-Williams type. Rocky Montain J. Math. 41 (2011), 371–386. | MR
[7] Anderson, D.R., Avery, R.I., Henderson, J.: An extension of the compression-expansion fixed point theorem of functional type. Electron. J. Differential Equations 2016 (253) (2016), 1–9. | MR
[8] Anderson, D.R., Avery, R.I., Henderson, J., Liu, X.: Operator type compression-expansion fixed point theorem. Electron. J. Differential Equations 2011 (2011), 1–11. | MR
[9] Anderson, D.R., Henderson, J., Avery, R.I.: Functional compression-expansion fixed point theorem of Leggett-Williams type. Electron. J. Differential Equations 2010 (2010), 1–9. | MR
[10] Banas, J., Goebel, K.: Measures of noncompactness in Banach spaces. Lect. Notes Pure Appl. Math., Marcel Dekker, Inc., New York, 1980. | MR
[11] Djebali, S., Mebarki, K.: Fixed point index theory for perturbation of expansive mappings by $k$-set contractions. Topol. Methods Nonlinear Anal. 54 (2A) (2019), 613–640. | MR
[12] Georgiev, S.G., Mebarki, K.: On fixed point index theory for the sum of operators and applications to a class of ODEs and PDEs. Appl. Gen. Topol. 22 (2) (2021), 259–294. | DOI | MR
[13] Guo, D.: A new fixed point theorem. Acta Math. Sinica 24 (3) (1981), 444–450. | MR
[14] Guo, D., Cho, Y.J., Zhu, J.: Partial ordering methods in nonlinear problems. Shangdon Science and Technology Publishing Press, Shangdon, 1985. | MR
[15] Guo, D., Lakshmikantham, V.: Nonlinear problems in abstract cones. vol. 5, Academic Press, Boston, Mass., USA, 1988. | MR | Zbl
[16] He, X., Ge, W.: Triple solutions for second-order three-point boundary value problems. J. Math. Anal. Appl. 268 (1) (2002), 256–265. | DOI | MR
[17] Henderson, J., Liu, X., Lyons, J.W., al., et: Right focal boundary value problems for difference equations. Opuscula Math. 30 (4) (2010), 447–456. | DOI | MR
[18] Henderson, J., Thompson, H.: Multiple symmetric positive solutions for a second order boundary value problem. Proc. Amer. Math. Soc. 128 (8) (2000), 2373–2379. | DOI | MR
[19] Leggett, R.W., Williams, L.R.: Multiple positive fixed points of nonlinear operators on ordered Banach space. Indiana Univ. Math. J. 28 (4) (1979), 673–688. | DOI | MR
[20] Lyons, J.W., Neugebauer, J.T.: A difference equation with anti-periodic boundary conditions. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 22 (1) (2015), 47–60. | MR
[21] Mohamed, A.: Existence of positive solutions for a fourth-order three-point BVP with sign-changing green’s function. Appl. Math. 12 (4) (2021), 311–321. | DOI
[22] Neugebauer, J., Seelbach, C.: A difference equation with Dirichlet boundary conditions. Commun. Appl. Anal. 21 (2) (2017), 237–248.
[23] Neugebauer, J.T.: The role of symmetry and concavity in the existence of solutions of a difference equation with Dirichlet boundary conditions. Int. J. Difference Equ. 15 (2) (2020), 483–491.
[24] Tian, Y., Ma, D., Ge, W.: Multiple positive solutions of four point boundary value problems for finite difference equations. J. Difference Equ. Appl. 12 (1) (2006), 57–68. | DOI | MR
[25] Yao, Q.L.: The existence and multiplicity of positive solutions for a third-order three-point boundary value problem. Acta Math. Appl. Sin. 19 (1) (2003), 117–122. | DOI | MR | Zbl
[26] Zhang, H.E., Sun, J.P.: A generalization of the Leggett-Williams fixed point theorem and its application. J. Appl. Math. Comput. 39 (1) (2012), 385–399. | DOI | MR
Cité par Sources :