Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem
Archivum mathematicum, Tome 58 (2022) no. 4, pp. 199-211 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, by using recent results on fixed point index, we develop a new fixed point theorem of functional type for the sum of two operators $T+S$ where $I-T$ is Lipschitz invertible and $S$ a $k$-set contraction. This fixed point theorem is then used to establish a new result on the existence of positive solutions to a non-autonomous second order difference equation.
In this paper, by using recent results on fixed point index, we develop a new fixed point theorem of functional type for the sum of two operators $T+S$ where $I-T$ is Lipschitz invertible and $S$ a $k$-set contraction. This fixed point theorem is then used to establish a new result on the existence of positive solutions to a non-autonomous second order difference equation.
DOI : 10.5817/AM2022-4-199
Classification : 39A27, 47H10
Keywords: fixed point; sum of operators; non-autonomous difference equations; positive solution
@article{10_5817_AM2022_4_199,
     author = {Bouchal, Lydia and Mebarki, Karima and Georgiev b , Svetlin Georgiev},
     title = {Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem},
     journal = {Archivum mathematicum},
     pages = {199--211},
     year = {2022},
     volume = {58},
     number = {4},
     doi = {10.5817/AM2022-4-199},
     mrnumber = {4529813},
     zbl = {07655743},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-4-199/}
}
TY  - JOUR
AU  - Bouchal, Lydia
AU  - Mebarki, Karima
AU  - Georgiev b , Svetlin Georgiev
TI  - Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem
JO  - Archivum mathematicum
PY  - 2022
SP  - 199
EP  - 211
VL  - 58
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-4-199/
DO  - 10.5817/AM2022-4-199
LA  - en
ID  - 10_5817_AM2022_4_199
ER  - 
%0 Journal Article
%A Bouchal, Lydia
%A Mebarki, Karima
%A Georgiev b , Svetlin Georgiev
%T Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem
%J Archivum mathematicum
%D 2022
%P 199-211
%V 58
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-4-199/
%R 10.5817/AM2022-4-199
%G en
%F 10_5817_AM2022_4_199
Bouchal, Lydia; Mebarki, Karima; Georgiev b , Svetlin Georgiev. Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem. Archivum mathematicum, Tome 58 (2022) no. 4, pp. 199-211. doi: 10.5817/AM2022-4-199

[1] Agarwal, R.P., O’Regan, D., Wong, P.J.Y.: Positive solutions of differential, difference and integral equations. Springer Science and Business Media, 1998. | MR

[2] Anderson, D.R., Avery, R.I.: Multiple positive solutions to a third-order discrete focal boundary value problem. Comput. Math. Appl. 42 (3–5) (2001), 333–340. | DOI | MR

[3] Anderson, D.R., Avery, R.I.: Fixed point theorem of cone expansion and compression of functional type. J. Difference Equ. Appl. 8 (11) (2002), 1073–1083. | DOI | MR

[4] Anderson, D.R., Avery, R.I.: A topological proof and extension of the Leggett-Williams fixed point theorem. Commun. Appl. Nonlinear Anal. 16 (4) (2009), 39–44. | MR

[5] Anderson, D.R., Avery, R.I.: Application of the omitted ray fixed point theorem. Electron. J. Qual. Theory Differ. Equ. 2014 (17) (2014), 1–9. | DOI | MR

[6] Anderson, D.R., Avery, R.I., Henderson, J.: Some Fixed point theorems of Leggett-Williams type. Rocky Montain J. Math. 41 (2011), 371–386. | MR

[7] Anderson, D.R., Avery, R.I., Henderson, J.: An extension of the compression-expansion fixed point theorem of functional type. Electron. J. Differential Equations 2016 (253) (2016), 1–9. | MR

[8] Anderson, D.R., Avery, R.I., Henderson, J., Liu, X.: Operator type compression-expansion fixed point theorem. Electron. J. Differential Equations 2011 (2011), 1–11. | MR

[9] Anderson, D.R., Henderson, J., Avery, R.I.: Functional compression-expansion fixed point theorem of Leggett-Williams type. Electron. J. Differential Equations 2010 (2010), 1–9. | MR

[10] Banas, J., Goebel, K.: Measures of noncompactness in Banach spaces. Lect. Notes Pure Appl. Math., Marcel Dekker, Inc., New York, 1980. | MR

[11] Djebali, S., Mebarki, K.: Fixed point index theory for perturbation of expansive mappings by $k$-set contractions. Topol. Methods Nonlinear Anal. 54 (2A) (2019), 613–640. | MR

[12] Georgiev, S.G., Mebarki, K.: On fixed point index theory for the sum of operators and applications to a class of ODEs and PDEs. Appl. Gen. Topol. 22 (2) (2021), 259–294. | DOI | MR

[13] Guo, D.: A new fixed point theorem. Acta Math. Sinica 24 (3) (1981), 444–450. | MR

[14] Guo, D., Cho, Y.J., Zhu, J.: Partial ordering methods in nonlinear problems. Shangdon Science and Technology Publishing Press, Shangdon, 1985. | MR

[15] Guo, D., Lakshmikantham, V.: Nonlinear problems in abstract cones. vol. 5, Academic Press, Boston, Mass., USA, 1988. | MR | Zbl

[16] He, X., Ge, W.: Triple solutions for second-order three-point boundary value problems. J. Math. Anal. Appl. 268 (1) (2002), 256–265. | DOI | MR

[17] Henderson, J., Liu, X., Lyons, J.W., al., et: Right focal boundary value problems for difference equations. Opuscula Math. 30 (4) (2010), 447–456. | DOI | MR

[18] Henderson, J., Thompson, H.: Multiple symmetric positive solutions for a second order boundary value problem. Proc. Amer. Math. Soc. 128 (8) (2000), 2373–2379. | DOI | MR

[19] Leggett, R.W., Williams, L.R.: Multiple positive fixed points of nonlinear operators on ordered Banach space. Indiana Univ. Math. J. 28 (4) (1979), 673–688. | DOI | MR

[20] Lyons, J.W., Neugebauer, J.T.: A difference equation with anti-periodic boundary conditions. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 22 (1) (2015), 47–60. | MR

[21] Mohamed, A.: Existence of positive solutions for a fourth-order three-point BVP with sign-changing green’s function. Appl. Math. 12 (4) (2021), 311–321. | DOI

[22] Neugebauer, J., Seelbach, C.: A difference equation with Dirichlet boundary conditions. Commun. Appl. Anal. 21 (2) (2017), 237–248.

[23] Neugebauer, J.T.: The role of symmetry and concavity in the existence of solutions of a difference equation with Dirichlet boundary conditions. Int. J. Difference Equ. 15 (2) (2020), 483–491.

[24] Tian, Y., Ma, D., Ge, W.: Multiple positive solutions of four point boundary value problems for finite difference equations. J. Difference Equ. Appl. 12 (1) (2006), 57–68. | DOI | MR

[25] Yao, Q.L.: The existence and multiplicity of positive solutions for a third-order three-point boundary value problem. Acta Math. Appl. Sin. 19 (1) (2003), 117–122. | DOI | MR | Zbl

[26] Zhang, H.E., Sun, J.P.: A generalization of the Leggett-Williams fixed point theorem and its application. J. Appl. Math. Comput. 39 (1) (2012), 385–399. | DOI | MR

Cité par Sources :