Keywords: Lucas sequences; Diophantine equation
@article{10_5817_AM2022_3_189,
author = {Hashim, Hayder R.},
title = {Bartz-Marlewski equation with generalized {Lucas} components},
journal = {Archivum mathematicum},
pages = {189--197},
year = {2022},
volume = {58},
number = {3},
doi = {10.5817/AM2022-3-189},
mrnumber = {4483053},
zbl = {07584090},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-189/}
}
Hashim, Hayder R. Bartz-Marlewski equation with generalized Lucas components. Archivum mathematicum, Tome 58 (2022) no. 3, pp. 189-197. doi: 10.5817/AM2022-3-189
[1] Bartz, E., Marlewski, A.: A computer search of solutions of a certain Diophantine equation. Pro Dialog (in Polish, English summary) 10 (2000), 47–57.
[2] Hashim, H.R., Tengely, Sz.: Solutions of a generalized Markoff equation in Fibonacci numbers. Math. Slovaca 70 (2020), no. 5, 1069–1078. DOI: 10.1515/ms-2017-0414 10.1515/ms-2017-0414 10.1515/ms-2017-0414 | DOI
[3] Hashim, H.R., Tengely, Sz., Szalay, L.: Markoff-Rosenberger triples and generalized Lucas sequences. Period. Math. Hung. (2021). | MR
[4] Kafle, B., Srinivasan, A., Togbé, A.: Markoff equation with Pell component. Fibonacci Quart. 58 (2020), no. 3, 226–230. | MR
[5] Koshy, T.: Polynomial extensions of two Gibonacci delights and their graph-theoretic confirmations. Math. Sci. 43 (2018), no. 2, 96–108 (English). | MR
[6] Luca, F., Srinivasan, A.: Markov equation with Fibonacci components. Fibonacci Q. 56 (2018), no. 2, 126–129 (English). | MR
[7] Marlewski, A., Zarzycki, P.: Infinitely many positive solutions of the Diophantine equation $x^{2} - kxy + y^{2} + x = 0$. Comput. Math. Appl. 47 (2004), no. 1, 115–121 (English). DOI: | DOI | MR
[8] Ribenboim, P.: My numbers, my friends. Popular lectures on number theory. New York, NY: Springer, 2000 (English). | MR
[9] Srinivasan, A.: The Markoff-Fibonacci numbers. Fibonacci Q. 58 (2020), no. 5, 222–228 (English). | MR
[10] Stein, W.thinspaceA., , : Sage Mathematics Software (Version 9.0). The Sage Development Team, 2020, http://www.sagemath.org
Cité par Sources :