Bartz-Marlewski equation with generalized Lucas components
Archivum mathematicum, Tome 58 (2022) no. 3, pp. 189-197
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\lbrace U_n\rbrace =\lbrace U_n(P,Q)\rbrace $ and $\lbrace V_n\rbrace =\lbrace V_n(P,Q)\rbrace $ be the Lucas sequences of the first and second kind respectively at the parameters $P \ge 1$ and $Q \in \lbrace -1, 1\rbrace $. In this paper, we provide a technique for characterizing the solutions of the so-called Bartz-Marlewski equation \[ x^2-3xy+y^2+x=0\,, \] where $(x,y)=(U_i, U_j)$ or $(V_i, V_j)$ with $i$, $ j \ge 1$. Then, the procedure of this technique is applied to completely resolve this equation with certain values of such parameters.
DOI :
10.5817/AM2022-3-189
Classification :
11B39, 11D45
Keywords: Lucas sequences; Diophantine equation
Keywords: Lucas sequences; Diophantine equation
@article{10_5817_AM2022_3_189,
author = {Hashim, Hayder R.},
title = {Bartz-Marlewski equation with generalized {Lucas} components},
journal = {Archivum mathematicum},
pages = {189--197},
publisher = {mathdoc},
volume = {58},
number = {3},
year = {2022},
doi = {10.5817/AM2022-3-189},
mrnumber = {4483053},
zbl = {07584090},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-189/}
}
TY - JOUR AU - Hashim, Hayder R. TI - Bartz-Marlewski equation with generalized Lucas components JO - Archivum mathematicum PY - 2022 SP - 189 EP - 197 VL - 58 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-189/ DO - 10.5817/AM2022-3-189 LA - en ID - 10_5817_AM2022_3_189 ER -
Hashim, Hayder R. Bartz-Marlewski equation with generalized Lucas components. Archivum mathematicum, Tome 58 (2022) no. 3, pp. 189-197. doi: 10.5817/AM2022-3-189
Cité par Sources :