A note on the nonexistence of spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form
Archivum mathematicum, Tome 58 (2022) no. 3, pp. 169-175 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We obtain nonexistence results concerning complete noncompact spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form, under the assumption that the support functions with respect to a fixed nonzero vector are linearly related. Our approach is based on a suitable maximum principle recently established by Alías, Caminha and do Nascimento [3].
We obtain nonexistence results concerning complete noncompact spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form, under the assumption that the support functions with respect to a fixed nonzero vector are linearly related. Our approach is based on a suitable maximum principle recently established by Alías, Caminha and do Nascimento [3].
DOI : 10.5817/AM2022-3-169
Classification : 53C42, 53C50
Keywords: Lorentzian space forms; complete spacelike hypersurfaces; polynomial volume growth; support functions
@article{10_5817_AM2022_3_169,
     author = {de Lima, Henrique Fernandes},
     title = {A note on the nonexistence of spacelike hypersurfaces with polynomial volume growth immersed in a {Lorentzian} space form},
     journal = {Archivum mathematicum},
     pages = {169--175},
     year = {2022},
     volume = {58},
     number = {3},
     doi = {10.5817/AM2022-3-169},
     mrnumber = {4483051},
     zbl = {07584088},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-169/}
}
TY  - JOUR
AU  - de Lima, Henrique Fernandes
TI  - A note on the nonexistence of spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form
JO  - Archivum mathematicum
PY  - 2022
SP  - 169
EP  - 175
VL  - 58
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-169/
DO  - 10.5817/AM2022-3-169
LA  - en
ID  - 10_5817_AM2022_3_169
ER  - 
%0 Journal Article
%A de Lima, Henrique Fernandes
%T A note on the nonexistence of spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form
%J Archivum mathematicum
%D 2022
%P 169-175
%V 58
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-169/
%R 10.5817/AM2022-3-169
%G en
%F 10_5817_AM2022_3_169
de Lima, Henrique Fernandes. A note on the nonexistence of spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form. Archivum mathematicum, Tome 58 (2022) no. 3, pp. 169-175. doi: 10.5817/AM2022-3-169

[1] Alías, L.J.: A congruence theorem for compact spacelike surfaces in de Sitter space. Tokyo J. Math. 24 (2001), 107–112. | DOI | MR

[2] Alías, L.J., Brasil Jr., A., Perdomo, O.: A characterization of quadric constant mean curvature hypersurfaces of spheres. J. Geom. Anal. 18 (2008), 687–703. | DOI | MR

[3] Alías, L.J., Caminha, A., do Nascimento, F.Y.: A maximum principle related to volume growth and applications. Ann. Mat. Pura Appl. 200 (2021), 1637–1650. | MR

[4] Alías, L.J., Pastor, J.A.: Constant mean curvature spacelike hypersurfaces with spherical boundary in the Lorentz-Minkowski space. J. Geom. Phys. 28 (1998), 85–93. | DOI | MR

[5] Aquino, C.P., de Lima, H.F.: On the Gauss map of complete CMC hypersurfaces in the hyperbolic space. J. Math. Anal. Appl. 386 (2012), 862–869. | DOI | MR

[6] Aquino, C.P., de Lima, H.F.: On the geometry of horospheres. Comment. Math. Helv. 89 (2014), 617–629. | DOI | MR

[7] Aquino, C.P., de Lima, H.F.: On the umbilicity of complete constant mean curvature spacelike hypersurfaces. Math. Ann. 360 (2014), 555–569. | DOI | MR

[8] Aquino, C.P., de Lima, H.F., dos Santos, F.R.: On the quadric CMC spacelike hypersurfaces in Lorentzian space forms. Colloq. Math. 145 (2016), 89–98. | MR

[9] Aquino, C.P., de Lima, H.F., Velásquez, M.A.L.: On the geometry of complete spacelike hypersurfaces in the anti-de Sitter space. Geom. Dedicata 174 (2015), 13–23. | DOI | MR

[10] Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry. CRC Press, New York, 1996, Second Edition. | MR

[11] Galloway, G.J., Senovilla, J.M.M.: Singularity theorems based on trapped submanifolds of arbitrary co-dimension. Classical Quantum Gravity 27 (15) (2010), 10pp., 152002. | DOI | MR

[12] Hawking, S.W., Ellis, G.F.R.: The large scale structure of spacetime. Cambridge University Press, London-New York, 1973. | MR

[13] Montiel, S.: Uniqueness of spacelike hypersurface of constant mean curvature in foliated spacetimes. Math. Ann. 314 (1999), 529–553. | DOI | MR

[14] O’Neill, B.: Semi-Riemannian Geometry, with Applications to Relativity. Academic Press, New York, 1983. | MR

[15] Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14 (1965), 57–59. | DOI | MR

[16] Senovilla, J.M.M.: Singularity theorems in general relativity: Achievements and open questions. Einstein and the Changing Worldviews of Physics (Christoph Lehner, Jürgen Renn, Schemmel, Matthias, eds.), Birkhäuser Boston, 2012, pp. 305–316.

Cité par Sources :