Keywords: Lorentzian space forms; complete spacelike hypersurfaces; polynomial volume growth; support functions
@article{10_5817_AM2022_3_169,
author = {de Lima, Henrique Fernandes},
title = {A note on the nonexistence of spacelike hypersurfaces with polynomial volume growth immersed in a {Lorentzian} space form},
journal = {Archivum mathematicum},
pages = {169--175},
year = {2022},
volume = {58},
number = {3},
doi = {10.5817/AM2022-3-169},
mrnumber = {4483051},
zbl = {07584088},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-169/}
}
TY - JOUR AU - de Lima, Henrique Fernandes TI - A note on the nonexistence of spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form JO - Archivum mathematicum PY - 2022 SP - 169 EP - 175 VL - 58 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-169/ DO - 10.5817/AM2022-3-169 LA - en ID - 10_5817_AM2022_3_169 ER -
%0 Journal Article %A de Lima, Henrique Fernandes %T A note on the nonexistence of spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form %J Archivum mathematicum %D 2022 %P 169-175 %V 58 %N 3 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-169/ %R 10.5817/AM2022-3-169 %G en %F 10_5817_AM2022_3_169
de Lima, Henrique Fernandes. A note on the nonexistence of spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form. Archivum mathematicum, Tome 58 (2022) no. 3, pp. 169-175. doi: 10.5817/AM2022-3-169
[1] Alías, L.J.: A congruence theorem for compact spacelike surfaces in de Sitter space. Tokyo J. Math. 24 (2001), 107–112. | DOI | MR
[2] Alías, L.J., Brasil Jr., A., Perdomo, O.: A characterization of quadric constant mean curvature hypersurfaces of spheres. J. Geom. Anal. 18 (2008), 687–703. | DOI | MR
[3] Alías, L.J., Caminha, A., do Nascimento, F.Y.: A maximum principle related to volume growth and applications. Ann. Mat. Pura Appl. 200 (2021), 1637–1650. | MR
[4] Alías, L.J., Pastor, J.A.: Constant mean curvature spacelike hypersurfaces with spherical boundary in the Lorentz-Minkowski space. J. Geom. Phys. 28 (1998), 85–93. | DOI | MR
[5] Aquino, C.P., de Lima, H.F.: On the Gauss map of complete CMC hypersurfaces in the hyperbolic space. J. Math. Anal. Appl. 386 (2012), 862–869. | DOI | MR
[6] Aquino, C.P., de Lima, H.F.: On the geometry of horospheres. Comment. Math. Helv. 89 (2014), 617–629. | DOI | MR
[7] Aquino, C.P., de Lima, H.F.: On the umbilicity of complete constant mean curvature spacelike hypersurfaces. Math. Ann. 360 (2014), 555–569. | DOI | MR
[8] Aquino, C.P., de Lima, H.F., dos Santos, F.R.: On the quadric CMC spacelike hypersurfaces in Lorentzian space forms. Colloq. Math. 145 (2016), 89–98. | MR
[9] Aquino, C.P., de Lima, H.F., Velásquez, M.A.L.: On the geometry of complete spacelike hypersurfaces in the anti-de Sitter space. Geom. Dedicata 174 (2015), 13–23. | DOI | MR
[10] Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry. CRC Press, New York, 1996, Second Edition. | MR
[11] Galloway, G.J., Senovilla, J.M.M.: Singularity theorems based on trapped submanifolds of arbitrary co-dimension. Classical Quantum Gravity 27 (15) (2010), 10pp., 152002. | DOI | MR
[12] Hawking, S.W., Ellis, G.F.R.: The large scale structure of spacetime. Cambridge University Press, London-New York, 1973. | MR
[13] Montiel, S.: Uniqueness of spacelike hypersurface of constant mean curvature in foliated spacetimes. Math. Ann. 314 (1999), 529–553. | DOI | MR
[14] O’Neill, B.: Semi-Riemannian Geometry, with Applications to Relativity. Academic Press, New York, 1983. | MR
[15] Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14 (1965), 57–59. | DOI | MR
[16] Senovilla, J.M.M.: Singularity theorems in general relativity: Achievements and open questions. Einstein and the Changing Worldviews of Physics (Christoph Lehner, Jürgen Renn, Schemmel, Matthias, eds.), Birkhäuser Boston, 2012, pp. 305–316.
Cité par Sources :