$L_{p}$ inequalities for the growth of polynomials with restricted zeros
Archivum mathematicum, Tome 58 (2022) no. 3, pp. 159-167 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $P(z)=\sum _{\nu =0}^{n}a_{\nu }z^{\nu }$ be a polynomial of degree at most $n$ which does not vanish in the disk $|z|1$, then for $1\le p\infty $ and $R>1$, Boas and Rahman proved \[\left\Vert P(Rz)\right\Vert _{p}\le \big (\left\Vert R^{n}+z\right\Vert_{p}/\left\Vert1+z\right\Vert_{p}\big )\left\Vert P\right\Vert _{p}.\] In this paper, we improve the above inequality for $0\le p \infty $ by involving some of the coefficients of the polynomial $P(z)$. Analogous result for the class of polynomials $P(z)$ having no zero in $|z|>1$ is also given.
Let $P(z)=\sum _{\nu =0}^{n}a_{\nu }z^{\nu }$ be a polynomial of degree at most $n$ which does not vanish in the disk $|z|1$, then for $1\le p\infty $ and $R>1$, Boas and Rahman proved \[\left\Vert P(Rz)\right\Vert _{p}\le \big (\left\Vert R^{n}+z\right\Vert_{p}/\left\Vert1+z\right\Vert_{p}\big )\left\Vert P\right\Vert _{p}.\] In this paper, we improve the above inequality for $0\le p \infty $ by involving some of the coefficients of the polynomial $P(z)$. Analogous result for the class of polynomials $P(z)$ having no zero in $|z|>1$ is also given.
DOI : 10.5817/AM2022-3-159
Classification : 26D10, 30C15, 41A17
Keywords: polynomials; integral inequalities; complex domain
@article{10_5817_AM2022_3_159,
     author = {Rather, Nisar A. and Gulzar, Suhail and Bhat, Aijaz A.},
     title = {$L_{p}$ inequalities for the growth of polynomials with restricted zeros},
     journal = {Archivum mathematicum},
     pages = {159--167},
     year = {2022},
     volume = {58},
     number = {3},
     doi = {10.5817/AM2022-3-159},
     mrnumber = {4483050},
     zbl = {07584087},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-159/}
}
TY  - JOUR
AU  - Rather, Nisar A.
AU  - Gulzar, Suhail
AU  - Bhat, Aijaz A.
TI  - $L_{p}$ inequalities for the growth of polynomials with restricted zeros
JO  - Archivum mathematicum
PY  - 2022
SP  - 159
EP  - 167
VL  - 58
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-159/
DO  - 10.5817/AM2022-3-159
LA  - en
ID  - 10_5817_AM2022_3_159
ER  - 
%0 Journal Article
%A Rather, Nisar A.
%A Gulzar, Suhail
%A Bhat, Aijaz A.
%T $L_{p}$ inequalities for the growth of polynomials with restricted zeros
%J Archivum mathematicum
%D 2022
%P 159-167
%V 58
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-159/
%R 10.5817/AM2022-3-159
%G en
%F 10_5817_AM2022_3_159
Rather, Nisar A.; Gulzar, Suhail; Bhat, Aijaz A. $L_{p}$ inequalities for the growth of polynomials with restricted zeros. Archivum mathematicum, Tome 58 (2022) no. 3, pp. 159-167. doi: 10.5817/AM2022-3-159

[1] Ankeny, N.C., Rivilin, T.J.: On a theorem of S. Bernstein. Pacific J. Math. 5 (1955), 849–852. | MR

[2] Arestov, V.: On integral inequalities for trigonometric polynomials and their derivatives. Math. USSR-Izv 18 (1982), 1–17. | DOI | MR

[3] Aziz, A.: Integral mean estimates for polynomials with restricted zeros. J. Approx. Theory 55 (1988), 232–239. | DOI | MR

[4] Boas, R.P., Rahman, Q.I.: $L^p$ inequalities for polynomials and entire function. Arch. Rational Mech. Anal. 11 (1962), 34–39. | DOI | MR

[5] Pólya, G., Szegö, G.: Aufgaben and Lehrsätze aus der Analysis. Springer-Verlag, Berlin, 1925. | MR

[6] Rahman, Q.I., Schmeisser, G.: Analytic theory of polynomials. Oxford University Press, 1922. | MR

[7] Rahman, Q.I., Schmeisser, G.: $L^{p}$ inequalities for polynomials. J. Approx. Theory 53 (1988), 26–32. | DOI | MR

[8] Royden, H.L.: Real Analysis. Macmillan Pub. Co., Inc., New York, 1968. | MR

[9] Turán, P.: Über die Ableitung von Polynomen. Compositio Math. 7 (1939), 89–95. | MR

Cité par Sources :