Keywords: first order BVPs; nonnegative solution; fixed point index; cone; expansive mapping; sum of operators
@article{10_5817_AM2022_3_141,
author = {Mouhous, Amirouche and Georgiev, Svetlin Georgiev and Mebarki, Karima},
title = {Existence of solutions for a class of first order boundary value problems},
journal = {Archivum mathematicum},
pages = {141--158},
year = {2022},
volume = {58},
number = {3},
doi = {10.5817/AM2022-3-141},
mrnumber = {4483049},
zbl = {07584086},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-141/}
}
TY - JOUR AU - Mouhous, Amirouche AU - Georgiev, Svetlin Georgiev AU - Mebarki, Karima TI - Existence of solutions for a class of first order boundary value problems JO - Archivum mathematicum PY - 2022 SP - 141 EP - 158 VL - 58 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-141/ DO - 10.5817/AM2022-3-141 LA - en ID - 10_5817_AM2022_3_141 ER -
%0 Journal Article %A Mouhous, Amirouche %A Georgiev, Svetlin Georgiev %A Mebarki, Karima %T Existence of solutions for a class of first order boundary value problems %J Archivum mathematicum %D 2022 %P 141-158 %V 58 %N 3 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-141/ %R 10.5817/AM2022-3-141 %G en %F 10_5817_AM2022_3_141
Mouhous, Amirouche; Georgiev, Svetlin Georgiev; Mebarki, Karima. Existence of solutions for a class of first order boundary value problems. Archivum mathematicum, Tome 58 (2022) no. 3, pp. 141-158. doi: 10.5817/AM2022-3-141
[1] Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical solution of boundary value problems for ordinary differential equations. SIAM Classics Appl. Math. 13 (1995). | MR
[2] Djebali, S., Mebarki, K.: Fixed point index theory for perturbation of expansive mappings by $k$-set contraction. Topol. Methods Nonlinear Anal. 54 (no 2A) (2019), 613–640, DOI 10.12775/TMNA.2019.055. | DOI | MR
[3] Franco, D., Nieto, J.J., O’Regan, D.: Anti-periodic boundary value problem for nonlinear first-order differential equations. Math. Inequal. Appl. 6 (2003), 477–485. | MR
[4] Georgiev, S., Kheloufi, A., Mebarki, K.: Classical solutions for the Korteweg-De Vries equation. New trends Nonlinear Anal. Appl., (to appear), 2022.
[5] Georgiev, S., Zennir, K.: Existence of solutions for a class of nonlinear impulsive wave equations. Ric. Mat. (2021), | DOI | MR
[6] Hong, S.: Boundary-value problems for first and second order functional differential inclusions. EJDE 2033 (no 32) (2003), 1–10. | MR
[7] Peng, S.: Positive solutions for first order periodic boundary value problem. Appl. Math. Comput. 158 (2004), 345–351. | DOI | MR
[8] Tisdell, C.C.: Existence of solutions to first-order periodic boundary value problems. J. Math. Anal. Appl. 323 (2006), 1325–1332. | DOI | MR
[9] Tisdell, C.C.: On the solvability of nonlinear first-order boundary value problems. EJDE 2006 (no 80) (2006), 1–8. | MR
[10] Wang, D.B.: Periodic boundary value problems for nonlinear first-order impulsive dynamic equations on time scales. Adv. Difference Equ. 2012 (12) (2012), 9 pp. | MR
[11] Xiang, T., Yuan, R.: A class of expansive-type Krasnosel’skii fixed point theorems. Nonlinear Anal. 71 (2009), 3229–3239. | DOI | MR
[12] Xing, Y., Fu, Y.: Some new results for BVPs of first-order nonlinear integro-differential equations of volterra type. Adv. Difference Equ. 2011 (14) (2011), 17 pp. | MR
Cité par Sources :