(Generalized) filter properties of the amalgamated algebra
Archivum mathematicum, Tome 58 (2022) no. 3, pp. 133-140 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ and $S$ be commutative rings with unity, $f\colon R\rightarrow S$ a ring homomorphism and $J$ an ideal of $S$. Then the subring $R\bowtie ^fJ:=\lbrace (a,f(a)+j)\mid a\in R$ and $j\in J\rbrace $ of $R\times S$ is called the amalgamation of $R$ with $S$ along $J$ with respect to $f$. In this paper, we determine when $R\bowtie ^fJ$ is a (generalized) filter ring.
Let $R$ and $S$ be commutative rings with unity, $f\colon R\rightarrow S$ a ring homomorphism and $J$ an ideal of $S$. Then the subring $R\bowtie ^fJ:=\lbrace (a,f(a)+j)\mid a\in R$ and $j\in J\rbrace $ of $R\times S$ is called the amalgamation of $R$ with $S$ along $J$ with respect to $f$. In this paper, we determine when $R\bowtie ^fJ$ is a (generalized) filter ring.
DOI : 10.5817/AM2022-3-133
Classification : 13A15, 13C14, 13C15, 13E05, 13H10
Keywords: amalgamated algebra; Cohen-Macaulay ring; $f$-ring; generalized $f$-ring
@article{10_5817_AM2022_3_133,
     author = {Azimi, Yusof},
     title = {(Generalized) filter properties of the amalgamated algebra},
     journal = {Archivum mathematicum},
     pages = {133--140},
     year = {2022},
     volume = {58},
     number = {3},
     doi = {10.5817/AM2022-3-133},
     mrnumber = {4483048},
     zbl = {07584085},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-133/}
}
TY  - JOUR
AU  - Azimi, Yusof
TI  - (Generalized) filter properties of the amalgamated algebra
JO  - Archivum mathematicum
PY  - 2022
SP  - 133
EP  - 140
VL  - 58
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-133/
DO  - 10.5817/AM2022-3-133
LA  - en
ID  - 10_5817_AM2022_3_133
ER  - 
%0 Journal Article
%A Azimi, Yusof
%T (Generalized) filter properties of the amalgamated algebra
%J Archivum mathematicum
%D 2022
%P 133-140
%V 58
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-133/
%R 10.5817/AM2022-3-133
%G en
%F 10_5817_AM2022_3_133
Azimi, Yusof. (Generalized) filter properties of the amalgamated algebra. Archivum mathematicum, Tome 58 (2022) no. 3, pp. 133-140. doi: 10.5817/AM2022-3-133

[1] Anderson, D.D., Winders, M.: Idealization of a module. J. Commut. Algebra 1 (2009), 3–56. | DOI | MR

[2] Azimi, Y.: Linkage property under the amalgamated construction. Comm. Algebra 49 (2021), 3743–3747. | DOI | MR

[3] Azimi, Y.: Constructing (non-)Catenarian rings. J. Algebra 597 (2022), 266–274. | DOI | MR

[4] Azimi, Y., Sahandi, P., Shirmihammadi, N.: Cohen-Macaulay properties under the amalgamated construction. J. Commut. Algebra 10 (4) (2018), 457–474. | DOI | MR

[5] Azimi, Y., Sahandi, P., Shirmihammadi, N.: Cohen-Macaulayness of amalgamated algebras. Algebr. Represent. Theory 23 (2019), 275–280. | DOI | MR

[6] Azimi, Y., Sahandi, P., Shirmohammadi, N.: Prüfer conditions under the amalgamated construction. Comm. Algebra 47 (2019), 2251–2261. | DOI | MR

[7] Brodmann, M.P., Sharp, R.Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Stud. Adv. Math., vol. 136, Cambridge University Press, 2013. | MR

[8] Bruns, W., Herzog, J.: Cohen-Macaulay rings. Cambridge Stud. Adv. Math., vol. 39, Cambridge University Press, 1998, Rev. ed. | MR

[9] Cuong, N.T., Schenzel, P., Trung, N.V.: Verallgemeinerte Cohen-Macaulay-Moduln. Math. Nachr. 85 (1978), 57–73. | MR

[10] D’Anna, M., Finocchiaro, C.A., Fontana, M.: Amalgamated algebras along an ideal. Commutative Algebra and Applications, Proceedings of the Fifth International Fez Conference on Commutative Algebra and Applications, Fez, Morocco,, 2008, W. de Gruyter Publisher, Berlin, 2009, pp. 155–172. | MR

[11] D’Anna, M., Finocchiaro, C.A., Fontana, M.: Properties of chains of prime ideals in an amalgamated algebra along an ideal. J. Pure Appl. Algebra 214 (2010), 1633–1641. | DOI | MR

[12] D’Anna, M., Finocchiaro, C.A., Fontana, M.: New algebraic properties of an amalgamated algebra along an ideal. Comm. Algebra 44 (2016), 1836–1851. | DOI | MR

[13] D’Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal: the basic properties. J. Algebra Appl. 6 (3) (2007), 443–459. | DOI | MR

[14] Lü, R., Tang, Z.: The F-depth of an ideal on a module. Proc. Amer. Math. Soc. 130 (7) (2002), 1905–1912. | DOI | MR

[15] Melkersson, L.: Some applications of a criterion for Artinianness of a module. J. Pure Appl. Algebra 101 (1995), 291–303. | DOI | MR

[16] Nagata, M.: Local Rings. Interscience, New York, 1962. | MR

[17] Nhan, L.T.: On generalized regular sequences and the finiteness for associated primes of local cohomology modules. Comm. Algebra 33 (2005), 793–806. | DOI | MR

[18] Nhan, L.T., Marcel, M.: Generalized f-modules and the associated primes of local cohomology modules. Comm. Algebra 34 (2006), 863–878. | DOI | MR

[19] Sahandi, P., Shirmohammadi, N.: Notes on amalgamated duplication of a ring along an ideal. Bull. Iranian Math. Soc. 41 (2015), 749–757. | MR

[20] Sahandi, P., Shirmohammadi, N., Sohrabi, S.: Cohen-Macaulay and Gorenstein properties under the amalgamated construction. Comm. Algebra 44 (2016), 1096–1109. | DOI | MR

[21] Stückrad, J., Vogel, W.: Buchsbaum Rings and Applications. Berlin: WEB Deutscher Verlag der Wissenschaften, 1986. | MR

Cité par Sources :