(Generalized) filter properties of the amalgamated algebra
Archivum mathematicum, Tome 58 (2022) no. 3, pp. 133-140
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $R$ and $S$ be commutative rings with unity, $f\colon R\rightarrow S$ a ring homomorphism and $J$ an ideal of $S$. Then the subring $R\bowtie ^fJ:=\lbrace (a,f(a)+j)\mid a\in R$ and $j\in J\rbrace $ of $R\times S$ is called the amalgamation of $R$ with $S$ along $J$ with respect to $f$. In this paper, we determine when $R\bowtie ^fJ$ is a (generalized) filter ring.
DOI :
10.5817/AM2022-3-133
Classification :
13A15, 13C14, 13C15, 13E05, 13H10
Keywords: amalgamated algebra; Cohen-Macaulay ring; $f$-ring; generalized $f$-ring
Keywords: amalgamated algebra; Cohen-Macaulay ring; $f$-ring; generalized $f$-ring
@article{10_5817_AM2022_3_133,
author = {Azimi, Yusof},
title = {(Generalized) filter properties of the amalgamated algebra},
journal = {Archivum mathematicum},
pages = {133--140},
publisher = {mathdoc},
volume = {58},
number = {3},
year = {2022},
doi = {10.5817/AM2022-3-133},
mrnumber = {4483048},
zbl = {07584085},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-133/}
}
TY - JOUR AU - Azimi, Yusof TI - (Generalized) filter properties of the amalgamated algebra JO - Archivum mathematicum PY - 2022 SP - 133 EP - 140 VL - 58 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-3-133/ DO - 10.5817/AM2022-3-133 LA - en ID - 10_5817_AM2022_3_133 ER -
Azimi, Yusof. (Generalized) filter properties of the amalgamated algebra. Archivum mathematicum, Tome 58 (2022) no. 3, pp. 133-140. doi: 10.5817/AM2022-3-133
Cité par Sources :