Oscillatory behavior of higher order neutral differential equation with multiple functional delays under derivative operator
Archivum mathematicum, Tome 58 (2022) no. 2, pp. 65-84.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this article, we obtain sufficient conditions so that every solution of neutral delay differential equation \[ \big (y(t)- \sum _{i=1}^k p_i(t) y(r_i(t))\big )^{(n)}+ v(t)G( y(g(t)))-u(t)H(y(h(t))) = f(t) \] oscillates or tends to zero as $t\rightarrow \infty $, where, $n \ge 1$ is any positive integer, $p_i$, $r_i\in C^{(n)}([0,\infty ),\mathbb{R})$  and $p_i$ are bounded for each $i=1,2,\dots ,k$. Further, $f\in C([0, \infty ), \mathbb{R})$, $g$, $h$, $v$, $u \in C([0, \infty ), [0, \infty ))$, $G$ and $H \in C(\mathbb{R},\mathbb{R})$. The functional delays $r_i(t)\le t$, $g(t)\le t$ and $h(t)\le t$ and all of them approach $\infty $ as $t\rightarrow \infty $. The results hold when $u\equiv 0$ and $f(t)\equiv 0$. This article extends, generalizes and improves some recent results, and further answers some unanswered questions from the literature.
DOI : 10.5817/AM2022-2-65
Classification : 34C10, 34C15, 34K40
Keywords: oscillation; non-oscillation; neutral equation; asymptotic behaviour
@article{10_5817_AM2022_2_65,
     author = {Rath, R.N. and Panda, K.C. and Rath, S.K.},
     title = {Oscillatory behavior of higher order neutral differential equation with multiple functional delays under derivative operator},
     journal = {Archivum mathematicum},
     pages = {65--84},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2022},
     doi = {10.5817/AM2022-2-65},
     mrnumber = {4448484},
     zbl = {07547202},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-2-65/}
}
TY  - JOUR
AU  - Rath, R.N.
AU  - Panda, K.C.
AU  - Rath, S.K.
TI  - Oscillatory behavior of higher order neutral differential equation with multiple functional delays under derivative operator
JO  - Archivum mathematicum
PY  - 2022
SP  - 65
EP  - 84
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-2-65/
DO  - 10.5817/AM2022-2-65
LA  - en
ID  - 10_5817_AM2022_2_65
ER  - 
%0 Journal Article
%A Rath, R.N.
%A Panda, K.C.
%A Rath, S.K.
%T Oscillatory behavior of higher order neutral differential equation with multiple functional delays under derivative operator
%J Archivum mathematicum
%D 2022
%P 65-84
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-2-65/
%R 10.5817/AM2022-2-65
%G en
%F 10_5817_AM2022_2_65
Rath, R.N.; Panda, K.C.; Rath, S.K. Oscillatory behavior of higher order neutral differential equation with multiple functional delays under derivative operator. Archivum mathematicum, Tome 58 (2022) no. 2, pp. 65-84. doi : 10.5817/AM2022-2-65. http://geodesic.mathdoc.fr/articles/10.5817/AM2022-2-65/

Cité par Sources :