Oscillatory behavior of higher order neutral differential equation with multiple functional delays under derivative operator
Archivum mathematicum, Tome 58 (2022) no. 2, pp. 65-84
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this article, we obtain sufficient conditions so that every solution of neutral delay differential equation \[ \big (y(t)- \sum _{i=1}^k p_i(t) y(r_i(t))\big )^{(n)}+ v(t)G( y(g(t)))-u(t)H(y(h(t))) = f(t) \] oscillates or tends to zero as $t\rightarrow \infty $, where, $n \ge 1$ is any positive integer, $p_i$, $r_i\in C^{(n)}([0,\infty ),\mathbb{R})$ and $p_i$ are bounded for each $i=1,2,\dots ,k$. Further, $f\in C([0, \infty ), \mathbb{R})$, $g$, $h$, $v$, $u \in C([0, \infty ), [0, \infty ))$, $G$ and $H \in C(\mathbb{R},\mathbb{R})$. The functional delays $r_i(t)\le t$, $g(t)\le t$ and $h(t)\le t$ and all of them approach $\infty $ as $t\rightarrow \infty $. The results hold when $u\equiv 0$ and $f(t)\equiv 0$. This article extends, generalizes and improves some recent results, and further answers some unanswered questions from the literature.
DOI :
10.5817/AM2022-2-65
Classification :
34C10, 34C15, 34K40
Keywords: oscillation; non-oscillation; neutral equation; asymptotic behaviour
Keywords: oscillation; non-oscillation; neutral equation; asymptotic behaviour
@article{10_5817_AM2022_2_65,
author = {Rath, R.N. and Panda, K.C. and Rath, S.K.},
title = {Oscillatory behavior of higher order neutral differential equation with multiple functional delays under derivative operator},
journal = {Archivum mathematicum},
pages = {65--84},
publisher = {mathdoc},
volume = {58},
number = {2},
year = {2022},
doi = {10.5817/AM2022-2-65},
mrnumber = {4448484},
zbl = {07547202},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-2-65/}
}
TY - JOUR AU - Rath, R.N. AU - Panda, K.C. AU - Rath, S.K. TI - Oscillatory behavior of higher order neutral differential equation with multiple functional delays under derivative operator JO - Archivum mathematicum PY - 2022 SP - 65 EP - 84 VL - 58 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-2-65/ DO - 10.5817/AM2022-2-65 LA - en ID - 10_5817_AM2022_2_65 ER -
%0 Journal Article %A Rath, R.N. %A Panda, K.C. %A Rath, S.K. %T Oscillatory behavior of higher order neutral differential equation with multiple functional delays under derivative operator %J Archivum mathematicum %D 2022 %P 65-84 %V 58 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-2-65/ %R 10.5817/AM2022-2-65 %G en %F 10_5817_AM2022_2_65
Rath, R.N.; Panda, K.C.; Rath, S.K. Oscillatory behavior of higher order neutral differential equation with multiple functional delays under derivative operator. Archivum mathematicum, Tome 58 (2022) no. 2, pp. 65-84. doi: 10.5817/AM2022-2-65
Cité par Sources :