Properties of solutions of quaternionic Riccati equations
Archivum mathematicum, Tome 58 (2022) no. 2, pp. 115-132 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study properties of regular solutions of quaternionic Riccati equations. The obtained results we use for study of the asymptotic behavior of solutions of two first-order linear quaternionic ordinary differential equations.
In this paper we study properties of regular solutions of quaternionic Riccati equations. The obtained results we use for study of the asymptotic behavior of solutions of two first-order linear quaternionic ordinary differential equations.
DOI : 10.5817/AM2022-2-115
Classification : 34C99, 34L30
Keywords: quaternions; the matrix representation of quaternions; quaternionic Riccati equations; regular; normal and extremal solutions of Riccati equations; normal; irreconci-lable; sub extremal and super extremal systems; principal and non principal solutions
@article{10_5817_AM2022_2_115,
     author = {Grigorian, Gevorg Avagovich},
     title = {Properties of solutions of quaternionic {Riccati} equations},
     journal = {Archivum mathematicum},
     pages = {115--132},
     year = {2022},
     volume = {58},
     number = {2},
     doi = {10.5817/AM2022-2-115},
     mrnumber = {4448487},
     zbl = {07547205},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-2-115/}
}
TY  - JOUR
AU  - Grigorian, Gevorg Avagovich
TI  - Properties of solutions of quaternionic Riccati equations
JO  - Archivum mathematicum
PY  - 2022
SP  - 115
EP  - 132
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-2-115/
DO  - 10.5817/AM2022-2-115
LA  - en
ID  - 10_5817_AM2022_2_115
ER  - 
%0 Journal Article
%A Grigorian, Gevorg Avagovich
%T Properties of solutions of quaternionic Riccati equations
%J Archivum mathematicum
%D 2022
%P 115-132
%V 58
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-2-115/
%R 10.5817/AM2022-2-115
%G en
%F 10_5817_AM2022_2_115
Grigorian, Gevorg Avagovich. Properties of solutions of quaternionic Riccati equations. Archivum mathematicum, Tome 58 (2022) no. 2, pp. 115-132. doi: 10.5817/AM2022-2-115

[1] Campos, J., Mavhin, J.: Periodic solutions of quaternionic-valued ordinary differential equations. Ann. Math. 185 (2006), 109–127. | MR

[2] Christianto, V., Smarandache, F.: An exact mapping from Navier-Stocks equation to Schrodinger equation via Riccati equation. Progr. Phys. 1 (2008), 38–39. | MR

[3] Egorov, A.I.: Riccati equations. Moskow, Fizmatlit, 2001.

[4] Gibbon, J.D., Holm, D.D., Kerr, R.M., Roulstone, I.: Quaternions and periodic dynamics in the Euler fluid equations. Nonlinearity 19 (2006), 1962–1983. | DOI | MR

[5] Grigorian, G. A.: Some properties of the solutions of third order linear ordinary differential equations. Rocky Mountain J. Math. 46 (1) (2016), 147–161. | DOI | MR

[6] Grigorian, G.A.: On some properties of solutions of the Riccati equation. Izv. Nats. Akad. Nauk Armenii Mat. 42 (4) (2007), 11–26, translation in J. Contemp. Math. Anal. 42 (2007), no. 4, 184–197. | MR

[7] Grigorian, G.A.: On the stability of systems of two first-order linear ordinary differential equations. Differ. Uravn. 51 (3) (2015), 283–292. | MR

[8] Grigorian, G.A.: Necessary conditions and a test for the stability of a system of two linear ordinary differential equations of the first order. Differ. Uravn. 52 (3) (2016), 292–300. | MR

[9] Grigorian, G.A.: On one oscillatory criterion for the second order linear ordinary differential equations. Opuscula Math. 36 (5) (2016), 589–601, | DOI | MR

[10] Grigorian, G.A.: Oscillatory criteria for the second order linear ordinary differential equations. Math. Slovaca 69 (2019), 1–14. | DOI | MR

[11] Grigorian, G.A.: Global solvability criteria for quaternionic Riccati equations. Arch. Math. (Brno) 57 (2021), 83–99. | DOI | MR

[12] Leschke, K., Moriya, K.: Applications of quaternionic holomorphic geometry to minimal surfaces. Complex manifolds 3 (1) (2016), 282–300. | DOI | MR

[13] Wilzinski, P.: Quaternionic-valued differential equations. The Riccati equations. J. Differential Equations 247 (2009), 2167–2187. | MR

[14] Zoladek, H.: Classification of diffeomorphisms of $\mathbb{S}^4$ induced by quaternionic Riccati equations with periodic coefficients. Topol. Methods Nonlinear Anal. 33 (2) (2009), 205–215. | DOI | MR

Cité par Sources :