Keywords: profinite topology; HNN-extension; Ribes-Zalesskii property of rank $k$; Baumslag-Solitar groups
@article{10_5817_AM2022_1_35,
author = {Mantika, Gilbert and Temate-Tangang, Narcisse and Tieudjo, Daniel},
title = {The {Ribes-Zalesskii} property of some one relator groups},
journal = {Archivum mathematicum},
pages = {35--47},
year = {2022},
volume = {58},
number = {1},
doi = {10.5817/AM2022-1-35},
mrnumber = {4412965},
zbl = {07511506},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-1-35/}
}
TY - JOUR AU - Mantika, Gilbert AU - Temate-Tangang, Narcisse AU - Tieudjo, Daniel TI - The Ribes-Zalesskii property of some one relator groups JO - Archivum mathematicum PY - 2022 SP - 35 EP - 47 VL - 58 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-1-35/ DO - 10.5817/AM2022-1-35 LA - en ID - 10_5817_AM2022_1_35 ER -
%0 Journal Article %A Mantika, Gilbert %A Temate-Tangang, Narcisse %A Tieudjo, Daniel %T The Ribes-Zalesskii property of some one relator groups %J Archivum mathematicum %D 2022 %P 35-47 %V 58 %N 1 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-1-35/ %R 10.5817/AM2022-1-35 %G en %F 10_5817_AM2022_1_35
Mantika, Gilbert; Temate-Tangang, Narcisse; Tieudjo, Daniel. The Ribes-Zalesskii property of some one relator groups. Archivum mathematicum, Tome 58 (2022) no. 1, pp. 35-47. doi: 10.5817/AM2022-1-35
[1] Allenby, R., Doniz, D.: A free product of finitely generated nilpotent groups amalgamating a cycle that is not subgroup separable. Proc. Amer. Math. Soc. 124 (4) (1996), 1003–1005. | DOI
[2] Baumslag, B., Tretkoff, M.: Residually finite HNN extensions. Comm. Algebra 6 (1978), 179–194. | DOI
[3] Baumslag, G.: On the residual finiteness of generalised free products of nilpotent groups. Trans. Amer. Math. Soc. 106 (1963), 193–209. | DOI
[4] Baumslag, G., Solitar, D.: Some two-generator one-relator non-Hopfien groups. Bull. Amer. Math. Soc. 38 (1962), 199–201.
[5] Cohen, D.: Combinatorial groups theory: a topological approach. London Math. Soc. Stud. Texts, 1989, ISBN: 0-521-34133-7; 0-521-34936-2.
[6] Coulbois, T.: Propriètés de Ribes-Zalesskii, topologie profinie, produit libre et généralisations. Ph.D. thesis, Universite Paris vii-Denis Diderot, 2000.
[7] Coulbois, T.: Free products, profinite topology and finitely generated subgroups. Internat. J. Algebra Comput. 14 (2001), 171–184. | DOI | MR
[8] Doucha, M., Malicki, M.: Generic representations of countable groups. Trans. Amer. Math. Soc. 164 (2019), 105–114. | MR
[9] Hall, M.: Cosets representations in free groups. Trans. Amer. Math. Soc. 67 (1949), 421–432. | DOI
[10] Hall, M.: A topology for free groups and related groups. Ann. of Math. 52 (1950), 127–139. | DOI
[11] Hall, P.: On the finiteness on certain soluble groups. Proc. London Math. Soc. 164 (1959), 595–622.
[12] Hirsch, K.: On infinite soluble groups. III. Proc. London Math. Soc. 49 (1946), 184–194. | DOI
[13] Lennox, J.C., Wilson, J.S.: On products of subgroups in polycyclic groups. Arch. Math. (Basel) 33 (1979), 305–309. | DOI
[14] Magnus, W., Karass, A., Solitar, D.: Combinatorial Group Theory: Presentations of Groups in Term of Generators and Relations. Interscience Publishers (John Wiley and Sons), New York, 1966.
[15] Mal’cev, A.: On homomorphisms onto finite groups. Ivanov. Gos. Ped. Inst. Ucen. Zap. 18 (1958), 49–60.
[16] Meskin, S.: Nonresidually finite one relator groups. Trans. Amer. Math. Soc. 164 (1972), 105–114. | DOI
[17] Metaftsis, V., Raptis, E.: Subgroups Separability of HNN-Extensions with Abelian Base Groups. J. Algebra 245 (2001), 42–49. | DOI | MR
[18] Moldavanskii, D., Uskova, A.: On the finitely separability of subgroups of generalized free products. Arxiv: 1308.3955.[mathGR], (2013).
[19] Neumann, B.H.: An essay of free products of groups with amalgamations. Philos. Trans. Roy. Soc. London Ser. A 246 (1954), 503–554. | DOI
[20] Pin, J.-E., Reutenaeur, C.: A conjecture on the Hall topology for free groups. Bull. London Math. Soc. 23 (1991), 356–362. | DOI
[21] Ribes, L.: Profinite graphs and groups. Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics, Springer, Cham, 2017, ISBN: 978-3-319-61041-2; 978-3-319-61199-0. | MR
[22] Ribes, L., Zalesskii, P.A.: Profinite topologies in free products of group. Internat. J. Algebra Comput. 14 (2004), 751–772. | DOI | MR
[23] Rips, E.: An example of a NON-LERF group which is a free product of LERF groups with an amalgamated cyclic subgroup. Israel J. Math. Vol. 70 (1) (1990), 104–110. | DOI
[24] Romanovskii, N.S.: On the residual finiteness of free products with respect to subgroups. Izv. Akad. Nauk SSSR Ser. Math. 33 (1969), 1324–1329.
[25] Rosendal, C.: Finitely approximable groups and actions Part I: The Ribes-Zalesskii property. J. Symbolic Logic 76 (4) (2011), 1297–1306. | DOI | MR
[26] Rosendal, C.: Finitely approximable groups and actions Part II: Generic representations. J. Symbolic Logic 76 (4) (2011), 1307–1321. | DOI | MR
[27] Shihong, You: The product separability of the generalized free products of cyclic groups. J. London Math. Soc.(2) 56 (1997), 91–103. | DOI
[28] Stebe, P.: Conjugacy separability of certain free products with amalgamation. Trans. Amer. Math. Soc. 156 (1971), 119–129. | DOI
Cité par Sources :