The Ribes-Zalesskii property of some one relator groups
Archivum mathematicum, Tome 58 (2022) no. 1, pp. 35-47 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The profinite topology on any abstract group $G$, is one such that the fundamental system of neighborhoods of the identity is given by all its subgroups of finite index. We say that a group $G$ has the Ribes-Zalesskii property of rank $k$, or is RZ$_{k}$ with $k$ a natural number, if any product $H_{1} H_{2} \cdots H_{k}$ of finitely generated subgroups $H_{1}, H_{2}, \cdots , H_{k}$ is closed in the profinite topology on $G$. And a group is said to have the Ribes-Zalesskii property or is RZ if it is RZ$_{k}$ for any natural number $k$. In this paper we characterize groups which are RZ$_{2}$. Consequently, we obtain condition under which a free product with amalgamation of two RZ$_{2}$ groups is RZ$_{2}$. After observing that the Baumslag-Solitar groups $BS (m, n)$ are RZ$_{2}$ and clearly RZ if $m= n$, we establish some suitable properties on the RZ$_{2}$ property for the case when $m= -n$. Finally, since any group $BS (m, n)$ can be viewed as a HNN-extension, then we point out the Ribes-Zalesskii property of rank two on some HNN-extensions.
The profinite topology on any abstract group $G$, is one such that the fundamental system of neighborhoods of the identity is given by all its subgroups of finite index. We say that a group $G$ has the Ribes-Zalesskii property of rank $k$, or is RZ$_{k}$ with $k$ a natural number, if any product $H_{1} H_{2} \cdots H_{k}$ of finitely generated subgroups $H_{1}, H_{2}, \cdots , H_{k}$ is closed in the profinite topology on $G$. And a group is said to have the Ribes-Zalesskii property or is RZ if it is RZ$_{k}$ for any natural number $k$. In this paper we characterize groups which are RZ$_{2}$. Consequently, we obtain condition under which a free product with amalgamation of two RZ$_{2}$ groups is RZ$_{2}$. After observing that the Baumslag-Solitar groups $BS (m, n)$ are RZ$_{2}$ and clearly RZ if $m= n$, we establish some suitable properties on the RZ$_{2}$ property for the case when $m= -n$. Finally, since any group $BS (m, n)$ can be viewed as a HNN-extension, then we point out the Ribes-Zalesskii property of rank two on some HNN-extensions.
DOI : 10.5817/AM2022-1-35
Classification : 20E06, 20E26, 20F05, 22A05
Keywords: profinite topology; HNN-extension; Ribes-Zalesskii property of rank $k$; Baumslag-Solitar groups
@article{10_5817_AM2022_1_35,
     author = {Mantika, Gilbert and Temate-Tangang, Narcisse and Tieudjo, Daniel},
     title = {The {Ribes-Zalesskii} property of some one relator groups},
     journal = {Archivum mathematicum},
     pages = {35--47},
     year = {2022},
     volume = {58},
     number = {1},
     doi = {10.5817/AM2022-1-35},
     mrnumber = {4412965},
     zbl = {07511506},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-1-35/}
}
TY  - JOUR
AU  - Mantika, Gilbert
AU  - Temate-Tangang, Narcisse
AU  - Tieudjo, Daniel
TI  - The Ribes-Zalesskii property of some one relator groups
JO  - Archivum mathematicum
PY  - 2022
SP  - 35
EP  - 47
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-1-35/
DO  - 10.5817/AM2022-1-35
LA  - en
ID  - 10_5817_AM2022_1_35
ER  - 
%0 Journal Article
%A Mantika, Gilbert
%A Temate-Tangang, Narcisse
%A Tieudjo, Daniel
%T The Ribes-Zalesskii property of some one relator groups
%J Archivum mathematicum
%D 2022
%P 35-47
%V 58
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-1-35/
%R 10.5817/AM2022-1-35
%G en
%F 10_5817_AM2022_1_35
Mantika, Gilbert; Temate-Tangang, Narcisse; Tieudjo, Daniel. The Ribes-Zalesskii property of some one relator groups. Archivum mathematicum, Tome 58 (2022) no. 1, pp. 35-47. doi: 10.5817/AM2022-1-35

[1] Allenby, R., Doniz, D.: A free product of finitely generated nilpotent groups amalgamating a cycle that is not subgroup separable. Proc. Amer. Math. Soc. 124 (4) (1996), 1003–1005. | DOI

[2] Baumslag, B., Tretkoff, M.: Residually finite HNN extensions. Comm. Algebra 6 (1978), 179–194. | DOI

[3] Baumslag, G.: On the residual finiteness of generalised free products of nilpotent groups. Trans. Amer. Math. Soc. 106 (1963), 193–209. | DOI

[4] Baumslag, G., Solitar, D.: Some two-generator one-relator non-Hopfien groups. Bull. Amer. Math. Soc. 38 (1962), 199–201.

[5] Cohen, D.: Combinatorial groups theory: a topological approach. London Math. Soc. Stud. Texts, 1989, ISBN: 0-521-34133-7; 0-521-34936-2.

[6] Coulbois, T.: Propriètés de Ribes-Zalesskii, topologie profinie, produit libre et généralisations. Ph.D. thesis, Universite Paris vii-Denis Diderot, 2000.

[7] Coulbois, T.: Free products, profinite topology and finitely generated subgroups. Internat. J. Algebra Comput. 14 (2001), 171–184. | DOI | MR

[8] Doucha, M., Malicki, M.: Generic representations of countable groups. Trans. Amer. Math. Soc. 164 (2019), 105–114. | MR

[9] Hall, M.: Cosets representations in free groups. Trans. Amer. Math. Soc. 67 (1949), 421–432. | DOI

[10] Hall, M.: A topology for free groups and related groups. Ann. of Math. 52 (1950), 127–139. | DOI

[11] Hall, P.: On the finiteness on certain soluble groups. Proc. London Math. Soc. 164 (1959), 595–622.

[12] Hirsch, K.: On infinite soluble groups. III. Proc. London Math. Soc. 49 (1946), 184–194. | DOI

[13] Lennox, J.C., Wilson, J.S.: On products of subgroups in polycyclic groups. Arch. Math. (Basel) 33 (1979), 305–309. | DOI

[14] Magnus, W., Karass, A., Solitar, D.: Combinatorial Group Theory: Presentations of Groups in Term of Generators and Relations. Interscience Publishers (John Wiley and Sons), New York, 1966.

[15] Mal’cev, A.: On homomorphisms onto finite groups. Ivanov. Gos. Ped. Inst. Ucen. Zap. 18 (1958), 49–60.

[16] Meskin, S.: Nonresidually finite one relator groups. Trans. Amer. Math. Soc. 164 (1972), 105–114. | DOI

[17] Metaftsis, V., Raptis, E.: Subgroups Separability of HNN-Extensions with Abelian Base Groups. J. Algebra 245 (2001), 42–49. | DOI | MR

[18] Moldavanskii, D., Uskova, A.: On the finitely separability of subgroups of generalized free products. Arxiv: 1308.3955.[mathGR], (2013).

[19] Neumann, B.H.: An essay of free products of groups with amalgamations. Philos. Trans. Roy. Soc. London Ser. A 246 (1954), 503–554. | DOI

[20] Pin, J.-E., Reutenaeur, C.: A conjecture on the Hall topology for free groups. Bull. London Math. Soc. 23 (1991), 356–362. | DOI

[21] Ribes, L.: Profinite graphs and groups. Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics, Springer, Cham, 2017, ISBN: 978-3-319-61041-2; 978-3-319-61199-0. | MR

[22] Ribes, L., Zalesskii, P.A.: Profinite topologies in free products of group. Internat. J. Algebra Comput. 14 (2004), 751–772. | DOI | MR

[23] Rips, E.: An example of a NON-LERF group which is a free product of LERF groups with an amalgamated cyclic subgroup. Israel J. Math. Vol. 70 (1) (1990), 104–110. | DOI

[24] Romanovskii, N.S.: On the residual finiteness of free products with respect to subgroups. Izv. Akad. Nauk SSSR Ser. Math. 33 (1969), 1324–1329.

[25] Rosendal, C.: Finitely approximable groups and actions Part I: The Ribes-Zalesskii property. J. Symbolic Logic 76 (4) (2011), 1297–1306. | DOI | MR

[26] Rosendal, C.: Finitely approximable groups and actions Part II: Generic representations. J. Symbolic Logic 76 (4) (2011), 1307–1321. | DOI | MR

[27] Shihong, You: The product separability of the generalized free products of cyclic groups. J. London Math. Soc.(2) 56 (1997), 91–103. | DOI

[28] Stebe, P.: Conjugacy separability of certain free products with amalgamation. Trans. Amer. Math. Soc. 156 (1971), 119–129. | DOI

Cité par Sources :