Keywords: finite model theory; non-finite axiomatizability; finite axiomatizability; finite bipartite graphs; finite simple group; join-irreducible congruence; congruence lattice; slim semimodular lattice; finite propositional logic; first-order inexpressibility; first-order language
@article{10_5817_AM2022_1_15,
author = {Cz\'edli, G\'abor},
title = {Cyclic congruences of slim semimodular lattices and non-finite axiomatizability of some finite structures},
journal = {Archivum mathematicum},
pages = {15--33},
year = {2022},
volume = {58},
number = {1},
doi = {10.5817/AM2022-1-15},
mrnumber = {4412964},
zbl = {07511505},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-1-15/}
}
TY - JOUR AU - Czédli, Gábor TI - Cyclic congruences of slim semimodular lattices and non-finite axiomatizability of some finite structures JO - Archivum mathematicum PY - 2022 SP - 15 EP - 33 VL - 58 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-1-15/ DO - 10.5817/AM2022-1-15 LA - en ID - 10_5817_AM2022_1_15 ER -
%0 Journal Article %A Czédli, Gábor %T Cyclic congruences of slim semimodular lattices and non-finite axiomatizability of some finite structures %J Archivum mathematicum %D 2022 %P 15-33 %V 58 %N 1 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-1-15/ %R 10.5817/AM2022-1-15 %G en %F 10_5817_AM2022_1_15
Czédli, Gábor. Cyclic congruences of slim semimodular lattices and non-finite axiomatizability of some finite structures. Archivum mathematicum, Tome 58 (2022) no. 1, pp. 15-33. doi: 10.5817/AM2022-1-15
[1] Burris, S., Sankappanavar, H.P.: A course in universal algebra. Graduate Texts in Mathematics. vol. 78, Springer-Verlag, New York-Berlin, 1981, 2012 update of the Millennium Edition, xvi+276 pp. ISBN: 0-387-90578-2.
[2] Czédli, G.: Patch extensions and trajectory colorings of slim rectangular lattices. Algebra Universalis 72 (2014), 125–154. | DOI | MR
[3] Czédli, G.: Characterizing circles by a convex combinatorial property. Acta Sci. Math. (Szeged) 83 (2017), 683–701. | DOI | MR
[4] Czédli, G.: Circles and crossing planar compact convex sets. Acta Sci. Math. (Szeged) 85 (2019), 337–353. | DOI | MR
[5] Czédli, G.: Lamps in slim rectangular planar semimodular lattices. Acta Sci. Math. (Szeged) 87 (2021), 381–413. | DOI | MR
[6] Czédli, G., Grätzer, G.: A new property of congruence lattices of slim planar semimodular lattices. to appear in Categ. Gen. Algebr. Struct. Appl.
[7] Czédli, G., Grätzer, G.: Planar semimodular lattices: structure and diagrams. Lattice Theory: special topics and applications, vol. 1, Birkhäuser-Springer, Cham, 2014, pp. 91–130. | MR
[8] Czédli, G., Kurusa, Á.: A convex combinatorial property of compact sets in the plane and its roots in lattice theory. Categ. Gen. Algebr. Struct. Appl. 11 (2019), 57–92, http://cgasa.sbu.ac.ir/article_82639_995ede57b706f33c6488407d8fdd492d.pdf
[9] Czédli, G., Schmidt, E.T.: The Jordan-Hölder theorem with uniqueness for groups and semimodular lattices. Algebra Universalis 66 (2011), 69–79. | DOI | MR
[10] Davey, B.A., Priestley, H.A.: Introduction to lattices and order. 2nd ed., Cambridge University Press, New York, 2002, xii+298 pp. | MR
[11] Dittmann, Ph.: Ultraproducts as a tool for first-order inexpressibility in the finite and infinite. | arXiv
[12] Ehrenfeucht, A.: An application of games to the completeness problem for formalized theories. Fund. Math. 49 (1961), 129–141. | DOI
[13] Fagin, R.: Finite-model theory — a personal perspective. Theoret. Comput. Sci. 116 (1993), 3–31. | DOI
[14] Fraïssé, R.: Sur quelques classifications des systèmes de relations. Publications Scientifiques de l'Université d'Alger, Series A 1 (1954), 35–182.
[15] Frayne, T., Morel, A.C., Scott, D.S.: Reduced direct products. Fund. Math. 51 (1962), 195–228. | DOI
[16] Grätzer, G.: General lattice theory. Birkhäuser Verlag, Basel, 2003, xx+663 pp. | MR
[17] Grätzer, G.: Congruences of fork extensions of slim, planar, semimodular lattices. Algebra Universalis 76 (2016), 139–154. | DOI | MR
[18] Grätzer, G.: Notes on planar semimodular lattices. VIII. Congruence lattices of SPS lattices. Algebra Universalis 81 (2020), paper No. 15, 3 pp. | DOI | MR
[19] Grätzer, G., Knapp, E.: Notes on planar semimodular lattices. I. Construction. Acta Sci. Math. (Szeged) 73 (2007), 445–462. | MR
[20] Grätzer, G., Knapp, E.: Notes on planar semimodular lattices. III. Congruences of rectangular lattice. Acta Sci. Math. (Szeged) 75 (2009), 29–48. | MR
[21] Grätzer, G., Nation, J.B.: A new look at the Jordan-Hölder theorem for semimodular lattices. Algebra Universalis 64 (2010), 309–311. | DOI | MR
[22] Ham, L., Jackson, M.: Axiomatisability and hardness for universal Horn classes of hypergraphs. Algebra Universalis 79 (2) (2018), paper No. 30, 17 pp., | DOI | MR
[23] Immerman, N.: Descriptive Complexity. Springer, New York, 1999.
[24] Keisler, H.J.: Ultraproducts of finite sets. J. Symbolic Logic 32 (1967), 47–57. | DOI
[25] Kurosh, A.G.: The theory of groups. Volume 1. 2nd english ed., Chelsea Publishing Co., New York, 1960, 272 pp.
[26] Libkin, L.: Elements of finite model theory. Springer-Verlag, Berlin, 2004, xiv+315 pp. | MR
[27] Poizat, B.: A course in model theory. An introduction to contemporary mathematical logic. Springer-Verlag, New York, 2000, xxxii+443 pp.
[28] Szmielew, W.: Elementary properties of Abelian groups. Fund. Math. 41 (1955), 203–271. | DOI
Cité par Sources :