Periodic traveling waves in the system of linearly coupled nonlinear oscillators on 2D-lattice
Archivum mathematicum, Tome 58 (2022) no. 1, pp. 1-13 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we obtain results on existence of non-constant periodic traveling waves with arbitrary speed $c>0$ in infinite system of linearly coupled nonlinear oscillators on a two-dimensional lattice. Sufficient conditions for the existence of such solutions are obtained with the aid of critical point method and linking theorem.
In this paper we obtain results on existence of non-constant periodic traveling waves with arbitrary speed $c>0$ in infinite system of linearly coupled nonlinear oscillators on a two-dimensional lattice. Sufficient conditions for the existence of such solutions are obtained with the aid of critical point method and linking theorem.
DOI : 10.5817/AM2022-1-1
Classification : 34C15, 37K58, 37K60, 74J30
Keywords: nonlinear oscillators; 2D-lattice; traveling waves; critical points; linking theorem
@article{10_5817_AM2022_1_1,
     author = {Bak, Sergiy},
     title = {Periodic traveling waves in the system of linearly coupled nonlinear oscillators on {2D-lattice}},
     journal = {Archivum mathematicum},
     pages = {1--13},
     year = {2022},
     volume = {58},
     number = {1},
     doi = {10.5817/AM2022-1-1},
     mrnumber = {4412963},
     zbl = {07511504},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-1-1/}
}
TY  - JOUR
AU  - Bak, Sergiy
TI  - Periodic traveling waves in the system of linearly coupled nonlinear oscillators on 2D-lattice
JO  - Archivum mathematicum
PY  - 2022
SP  - 1
EP  - 13
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-1-1/
DO  - 10.5817/AM2022-1-1
LA  - en
ID  - 10_5817_AM2022_1_1
ER  - 
%0 Journal Article
%A Bak, Sergiy
%T Periodic traveling waves in the system of linearly coupled nonlinear oscillators on 2D-lattice
%J Archivum mathematicum
%D 2022
%P 1-13
%V 58
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-1-1/
%R 10.5817/AM2022-1-1
%G en
%F 10_5817_AM2022_1_1
Bak, Sergiy. Periodic traveling waves in the system of linearly coupled nonlinear oscillators on 2D-lattice. Archivum mathematicum, Tome 58 (2022) no. 1, pp. 1-13. doi: 10.5817/AM2022-1-1

[1] Aubry, S.: Breathers in nonlinear lattices: existence, linear stability and quantization. Physica D 103 (1997), 201–250. | DOI

[2] Bak, S.: The existence of heteroclinic traveling waves in the discrete sine-Gordon equation with nonlinear interaction on a 2D-lattice. Zh. Mat. Fiz. Anal. Geom. 14 (1) (2018), 16–26. | DOI | MR

[3] Bak, S.M.: Travelling waves in chains of oscillators. Mat. Stud. 26 (2) (2006), 140–153. | MR

[4] Bak, S.M.: Periodic travelling waves in chains of oscillators. Commun. Math. Anal. 3 (1) (2007), 19–26. | MR

[5] Bak, S.M.: Existence of periodic traveling waves in systems of nonlinear oscillators on 2D-lattice. Mat. Stud. 35 (1) (2011), 60–65, (in Ukrainian). | MR

[6] Bak, S.M.: Periodic travelling waves in the discrete sine–Gordon equation on 2D-lattice. Math. Comput. Model. Phys. Math. Sci. 9 (2013), 5–10, (in Ukrainian).

[7] Bak, S.M.: Existence of heteroclinic traveling waves in a system of oscillators on a two-dimensional lattice. J. Math. Sci. 217 (2) (2016), 187–197. | DOI | MR

[8] Bak, S.M.: Existence of solitary traveling waves for a system of nonlinearly coupled oscillators on the 2d-lattice. Ukr. Math. J. 69 (4) (2017), 509–520. | DOI | MR

[9] Bak, S.M.: Homoclinic travelling waves in discrete sine-Gordon equation with nonlinear interaction on 2D lattice. Mat. Stud. 52 (2) (2019), 176–184. | MR

[10] Bak, S.N., Pankov, A.A.: Travelling waves in systems of oscillators on 2D-lattices. J. Math. Sci. 174 (4) (2011), 916–920. | MR

[11] Bell, J.: Some threshold results for models of myelinated nerves. Math. Biosci. 54 (1981), 181–190. | DOI

[12] Braun, O.M., Kivshar, Y.S.: Nonlinear dynamics of the Frenkel-Kontorova model. Phys. Rep. 306 (1998), 1–108. | DOI

[13] Braun, O.M., Kivshar, Y.S.: The Frenkel-Kontorova Model. Concepts, Methods and Applications. Berlin: Springer, 2004. | MR

[14] Cahn, J.W.: Theory of crystal growth and interface motion in crystalline materials. Acta Metall. 8 (1960), 554–562. | DOI

[15] Cahn, J.W., Mallet-Paret, J., van Vleck, E.S.: Travelling wave solutions for systems of ODEs on a two-dimensional spatial lattice. SIAM J. Appl. Math. 59 (2) (1998), 455–493. | DOI

[16] Chow, S.N., Mallet-Paret, J., Shen, W.: Travelling waves in lattice dynamical systems. J. Differential Equations 149 (1998), 248–291. | DOI

[17] Chua, L.O., Roska, T.: The CNN paradigm. IEEE Trans. Circuits Syst. 40 (1993), 147–156. | DOI

[18] Eilbeck, J.C., Flesch, R.: Calculation of families of solitary waves on discrete lattices. Phys. Lett. A 149 (1990), 200–202. | DOI

[19] Fečkan, M., Rothos, V.: Travelling waves in Hamiltonian systems on 2D lattices with nearest neighbour interactions. Nonlinearity 20 (2007), 319–341. | DOI | MR

[20] Flach, S., Willis, C.R.: Discrete breathers. Phys. Rep. 295 (1998), 181–264. | DOI

[21] Friesecke, G., Matthies, K.: Geometric solitary waves in a 2D math-spring lattice. Discrete Contin. Dyn. Syst. 3 (1) (2003), 105–114. | MR

[22] Hupkes, H.J., Morelli, L., Stehlí, P., Švígler, V.: Multichromatic travelling waves for lattice Nagumo equations. Appl. Math. Comput. 361 (15) (2019), 430–452. | MR

[23] Iooss, G., Kirschgässner, K.: Travelling waves in a chain of coupled nonlinear oscillators. Commun. Math. Phys. 211 (2000), 439–464. | DOI

[24] Keener, J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47 (3) (1987), 556–572. | DOI

[25] Kreiner, C.-F., Zimmer, J.: Heteroclinic travelling waves for the lattice sine-Gordon equation with linear pair interaction. Discrete Contin. Dyn. Syst. 25 (3) (2009), 1–17. | MR

[26] Kreiner, C.-F., Zimmer, J.: Travelling wave solutions for the discrete sine-Gordon equation with nonlinear pair interaction. Nonlinear Anal. 70 (9) (2009), 3146–3158. | DOI | MR

[27] Laplante, J.P., Erneux, T.: Propagation failure in arrays of coupled bistable chemical reactors. J. Phys. Chem. 96 (1992), 4931–4934. | DOI

[28] Makita, P.D.: Periodic and homoclinic travelling waves in infinite lattices. Nonlinear Anal. 74 (2011), 2071–2086. | DOI | MR

[29] Pankov, A.: Traveling waves and periodic oscillations in Fermi-Pasta-Ulam lattices. London: Imperial College Press, 2005. | MR

[30] Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, 1986. | Zbl

[31] Wattis, J.A.D.: Approximations to solitary waves on lattices, II: Quasicontinuum methods for fast and slow waves. J. Phys. A 26 (1993), 1193–1209. | DOI

[32] Wattis, J.A.D.: Solitary waves on a two-dimensional lattice. Phys. Scripta 50 (3) (1994), 238–242. | DOI

[33] Wattis, J.A.D.: Approximations to solitary waves on lattices, III: The monatomic lattice with second-neighbour interactions. J. Phys. A 29 (1996), 8139–8157. | DOI

[34] Willem, M.: Minimax theorems. Boston, Birkhäuser, 1996. | Zbl

[35] Zhang, L., Guo, S.: Existence and multiplicity of wave trains in 2D lattices. J. Differential Equations 257 (2014), 759–783. | DOI | MR

Cité par Sources :