Periodic traveling waves in the system of linearly coupled nonlinear oscillators on 2D-lattice
Archivum mathematicum, Tome 58 (2022) no. 1, pp. 1-13
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we obtain results on existence of non-constant periodic traveling waves with arbitrary speed $c>0$ in infinite system of linearly coupled nonlinear oscillators on a two-dimensional lattice. Sufficient conditions for the existence of such solutions are obtained with the aid of critical point method and linking theorem.
DOI :
10.5817/AM2022-1-1
Classification :
34C15, 37K58, 37K60, 74J30
Keywords: nonlinear oscillators; 2D-lattice; traveling waves; critical points; linking theorem
Keywords: nonlinear oscillators; 2D-lattice; traveling waves; critical points; linking theorem
@article{10_5817_AM2022_1_1,
author = {Bak, Sergiy},
title = {Periodic traveling waves in the system of linearly coupled nonlinear oscillators on {2D-lattice}},
journal = {Archivum mathematicum},
pages = {1--13},
publisher = {mathdoc},
volume = {58},
number = {1},
year = {2022},
doi = {10.5817/AM2022-1-1},
mrnumber = {4412963},
zbl = {07511504},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2022-1-1/}
}
TY - JOUR AU - Bak, Sergiy TI - Periodic traveling waves in the system of linearly coupled nonlinear oscillators on 2D-lattice JO - Archivum mathematicum PY - 2022 SP - 1 EP - 13 VL - 58 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2022-1-1/ DO - 10.5817/AM2022-1-1 LA - en ID - 10_5817_AM2022_1_1 ER -
%0 Journal Article %A Bak, Sergiy %T Periodic traveling waves in the system of linearly coupled nonlinear oscillators on 2D-lattice %J Archivum mathematicum %D 2022 %P 1-13 %V 58 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2022-1-1/ %R 10.5817/AM2022-1-1 %G en %F 10_5817_AM2022_1_1
Bak, Sergiy. Periodic traveling waves in the system of linearly coupled nonlinear oscillators on 2D-lattice. Archivum mathematicum, Tome 58 (2022) no. 1, pp. 1-13. doi: 10.5817/AM2022-1-1
Cité par Sources :