An upper bound of a generalized upper Hamiltonian number of a graph
Archivum mathematicum, Tome 57 (2021) no. 5, pp. 299-311
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this article we study graphs with ordering of vertices, we define a generalization called a pseudoordering, and for a graph $H$ we define the $H$-Hamiltonian number of a graph $G$. We will show that this concept is a generalization of both the Hamiltonian number and the traceable number. We will prove equivalent characteristics of an isomorphism of graphs $G$ and $H$ using $H$-Hamiltonian number of $G$. Furthermore, we will show that for a fixed number of vertices, each path has a maximal upper $H$-Hamiltonian number, which is a generalization of the same claim for upper Hamiltonian numbers and upper traceable numbers. Finally we will show that for every connected graph $H$ only paths have maximal $H$-Hamiltonian number.
DOI :
10.5817/AM2021-5-299
Classification :
05C12, 05C45
Keywords: graph; vertices; ordering; pseudoordering; upper Hamiltonian number; upper traceable number; upper H-Hamiltonian number; Hamiltonian spectra
Keywords: graph; vertices; ordering; pseudoordering; upper Hamiltonian number; upper traceable number; upper H-Hamiltonian number; Hamiltonian spectra
@article{10_5817_AM2021_5_299,
author = {Dz\'urik, Martin},
title = {An upper bound of a generalized upper {Hamiltonian} number of a graph},
journal = {Archivum mathematicum},
pages = {299--311},
publisher = {mathdoc},
volume = {57},
number = {5},
year = {2021},
doi = {10.5817/AM2021-5-299},
mrnumber = {4346115},
zbl = {07442416},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-5-299/}
}
TY - JOUR AU - Dzúrik, Martin TI - An upper bound of a generalized upper Hamiltonian number of a graph JO - Archivum mathematicum PY - 2021 SP - 299 EP - 311 VL - 57 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-5-299/ DO - 10.5817/AM2021-5-299 LA - en ID - 10_5817_AM2021_5_299 ER -
Dzúrik, Martin. An upper bound of a generalized upper Hamiltonian number of a graph. Archivum mathematicum, Tome 57 (2021) no. 5, pp. 299-311. doi: 10.5817/AM2021-5-299
Cité par Sources :