Keywords: existence; Hadamard-Caputo derivative; implicit fractional inclusion; convex and nonconvex cases
@article{10_5817_AM2021_5_285,
author = {Zahed, Ahmed and Hamani, Samira and Graef, John R.},
title = {Boundary value problems for {Hadamard-Caputo} implicit fractional differential inclusions with nonlocal conditions},
journal = {Archivum mathematicum},
pages = {285--297},
year = {2021},
volume = {57},
number = {5},
doi = {10.5817/AM2021-5-285},
mrnumber = {4346114},
zbl = {07442415},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-5-285/}
}
TY - JOUR AU - Zahed, Ahmed AU - Hamani, Samira AU - Graef, John R. TI - Boundary value problems for Hadamard-Caputo implicit fractional differential inclusions with nonlocal conditions JO - Archivum mathematicum PY - 2021 SP - 285 EP - 297 VL - 57 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-5-285/ DO - 10.5817/AM2021-5-285 LA - en ID - 10_5817_AM2021_5_285 ER -
%0 Journal Article %A Zahed, Ahmed %A Hamani, Samira %A Graef, John R. %T Boundary value problems for Hadamard-Caputo implicit fractional differential inclusions with nonlocal conditions %J Archivum mathematicum %D 2021 %P 285-297 %V 57 %N 5 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2021-5-285/ %R 10.5817/AM2021-5-285 %G en %F 10_5817_AM2021_5_285
Zahed, Ahmed; Hamani, Samira; Graef, John R. Boundary value problems for Hadamard-Caputo implicit fractional differential inclusions with nonlocal conditions. Archivum mathematicum, Tome 57 (2021) no. 5, pp. 285-297. doi: 10.5817/AM2021-5-285
[1] Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: Implicit Fractional Differential and Integral Equations: Existence and Stability. De Gruyter, Berlin, 2018. | MR
[2] Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations. Springer, New York, 2012. | MR
[3] Abbas, S., Benchohra, M., N’Guérékata, G.M.: Advanced Fractional Differential and Integral Equations. Nova Science Publishers, New York, 2015. | MR | Zbl
[4] Adjabi, Y., Jarad, F., Baleanu, D., Abdeljawad, T.: On Cauchy problems with Caputo Hadamard fractional derivatives. J. Comput. Anal. Appl. 21 (2016), 661–681. | MR
[5] Agarwal, R.P., Benchohra, M., Hamani, S.: Boundary value problems for fractional differential inclusions. Adv. Stud. Contemp. Math. 16 (2008), 181–196. | MR
[6] Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems for nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109 (2010), 973–1033. | DOI | MR
[7] Aubin, J.P., Cellina, A.: Differential Inclusions. Springer-Verlag, Berlin-Heidelberg, New York, 1984. | Zbl
[8] Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston, 1990. | Zbl
[9] Benchohra, M., Souid, M.S.: Integrable solutions for implicit fractional order differential equations. Transylvanian J. Math. Mechanics 6 (2014), 101–107. | MR
[10] Benchohra, M., Souid, M.S.: Integrable solutions for implicit fractional order functional differential equations with infinite delay. Arch. Math. (Brno) 51 (2015), 67–76. | DOI | MR
[11] Benchohra, M., Souid, M.S.: $L^1$-solutions for implicit fractional order differential equations with nonlocal condition. Filomat 30 (2016), 1485–1492. | DOI | MR
[12] Bohnenblust, H.F., Karlin, S.: On a theorem of Ville. Contribution to the Theory of Games, Annals of Math. Studies, vol. 24, Princeton University Press, Princeton, 1950, pp. 155–160.
[13] Byszewski, L.: Theorems about existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162 (1991), 494–505. | DOI
[14] Byszewski, L.: Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution nonlocal Cauchy problem. Selected problems of mathematics, , 50th Anniv. Cracow Univ. Technol. Anniv. Issue, 6, Cracow Univ. Technol., Krakow,, 1995, pp. 25–30.
[15] Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Math., vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. | DOI | Zbl
[16] Covitz, H., Nadler, Jr., S.B.: Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970), 5–11. | DOI
[17] Deimling, K.: Multivalued Differential Equations. De Gruyter, Berlin-New York, 1992. | Zbl
[18] Granas, A., Dugundji, J.: Fixed Point Theory. Springer-Verlag, New York, 2003. | MR | Zbl
[19] Guerraiche, N., Hamani, S., Henderson, J.: Boundary value problems for differential inclusions with integral and anti-periodic conditions. Comm. Appl. Nonlinear Anal. 23 (2016), 33–46. | MR
[20] Guerraiche, N., Hamani, S., Henderson, J.: Initial value problems for fractional functional differential inclusions with Hadamard type derivative. Arch. Math. (Brno) 52 (2016), 263–273. | DOI | MR
[21] Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000. | Zbl
[22] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Math. Studies, vol. 204, Elsevier, Amsterdam, 2006. | MR | Zbl
[23] Momani, S.M., Hadid, S.B., Alawenh, Z.M.: Some analytical properties of solutions of differential equations of noninteger order. Int. J. Math. Math. Sci. 2004 (2004), 697–701. | DOI | MR | Zbl
[24] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, 1999. | Zbl
[25] Zhang, S.: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron. J. Differential Equ. 2006 (2006), no. 36, 1–12. | MR | Zbl
Cité par Sources :