Boundary value problems for Hadamard-Caputo implicit fractional differential inclusions with nonlocal conditions
Archivum mathematicum, Tome 57 (2021) no. 5, pp. 285-297 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, the authors establish sufficient conditions for the existence of solutions to implicit fractional differential inclusions with nonlocal conditions. Both of the cases of convex and nonconvex valued right hand sides are considered.
In this paper, the authors establish sufficient conditions for the existence of solutions to implicit fractional differential inclusions with nonlocal conditions. Both of the cases of convex and nonconvex valued right hand sides are considered.
DOI : 10.5817/AM2021-5-285
Classification : 26A33, 34A08, 34A60, 34B15
Keywords: existence; Hadamard-Caputo derivative; implicit fractional inclusion; convex and nonconvex cases
@article{10_5817_AM2021_5_285,
     author = {Zahed, Ahmed and Hamani, Samira and Graef, John R.},
     title = {Boundary value problems for {Hadamard-Caputo} implicit fractional differential inclusions with nonlocal conditions},
     journal = {Archivum mathematicum},
     pages = {285--297},
     year = {2021},
     volume = {57},
     number = {5},
     doi = {10.5817/AM2021-5-285},
     mrnumber = {4346114},
     zbl = {07442415},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-5-285/}
}
TY  - JOUR
AU  - Zahed, Ahmed
AU  - Hamani, Samira
AU  - Graef, John R.
TI  - Boundary value problems for Hadamard-Caputo implicit fractional differential inclusions with nonlocal conditions
JO  - Archivum mathematicum
PY  - 2021
SP  - 285
EP  - 297
VL  - 57
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-5-285/
DO  - 10.5817/AM2021-5-285
LA  - en
ID  - 10_5817_AM2021_5_285
ER  - 
%0 Journal Article
%A Zahed, Ahmed
%A Hamani, Samira
%A Graef, John R.
%T Boundary value problems for Hadamard-Caputo implicit fractional differential inclusions with nonlocal conditions
%J Archivum mathematicum
%D 2021
%P 285-297
%V 57
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2021-5-285/
%R 10.5817/AM2021-5-285
%G en
%F 10_5817_AM2021_5_285
Zahed, Ahmed; Hamani, Samira; Graef, John R. Boundary value problems for Hadamard-Caputo implicit fractional differential inclusions with nonlocal conditions. Archivum mathematicum, Tome 57 (2021) no. 5, pp. 285-297. doi: 10.5817/AM2021-5-285

[1] Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: Implicit Fractional Differential and Integral Equations: Existence and Stability. De Gruyter, Berlin, 2018. | MR

[2] Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations. Springer, New York, 2012. | MR

[3] Abbas, S., Benchohra, M., N’Guérékata, G.M.: Advanced Fractional Differential and Integral Equations. Nova Science Publishers, New York, 2015. | MR | Zbl

[4] Adjabi, Y., Jarad, F., Baleanu, D., Abdeljawad, T.: On Cauchy problems with Caputo Hadamard fractional derivatives. J. Comput. Anal. Appl. 21 (2016), 661–681. | MR

[5] Agarwal, R.P., Benchohra, M., Hamani, S.: Boundary value problems for fractional differential inclusions. Adv. Stud. Contemp. Math. 16 (2008), 181–196. | MR

[6] Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems for nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109 (2010), 973–1033. | DOI | MR

[7] Aubin, J.P., Cellina, A.: Differential Inclusions. Springer-Verlag, Berlin-Heidelberg, New York, 1984. | Zbl

[8] Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston, 1990. | Zbl

[9] Benchohra, M., Souid, M.S.: Integrable solutions for implicit fractional order differential equations. Transylvanian J. Math. Mechanics 6 (2014), 101–107. | MR

[10] Benchohra, M., Souid, M.S.: Integrable solutions for implicit fractional order functional differential equations with infinite delay. Arch. Math. (Brno) 51 (2015), 67–76. | DOI | MR

[11] Benchohra, M., Souid, M.S.: $L^1$-solutions for implicit fractional order differential equations with nonlocal condition. Filomat 30 (2016), 1485–1492. | DOI | MR

[12] Bohnenblust, H.F., Karlin, S.: On a theorem of Ville. Contribution to the Theory of Games, Annals of Math. Studies, vol. 24, Princeton University Press, Princeton, 1950, pp. 155–160.

[13] Byszewski, L.: Theorems about existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162 (1991), 494–505. | DOI

[14] Byszewski, L.: Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution nonlocal Cauchy problem. Selected problems of mathematics, , 50th Anniv. Cracow Univ. Technol. Anniv. Issue, 6, Cracow Univ. Technol., Krakow,, 1995, pp. 25–30.

[15] Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Math., vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. | DOI | Zbl

[16] Covitz, H., Nadler, Jr., S.B.: Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970), 5–11. | DOI

[17] Deimling, K.: Multivalued Differential Equations. De Gruyter, Berlin-New York, 1992. | Zbl

[18] Granas, A., Dugundji, J.: Fixed Point Theory. Springer-Verlag, New York, 2003. | MR | Zbl

[19] Guerraiche, N., Hamani, S., Henderson, J.: Boundary value problems for differential inclusions with integral and anti-periodic conditions. Comm. Appl. Nonlinear Anal. 23 (2016), 33–46. | MR

[20] Guerraiche, N., Hamani, S., Henderson, J.: Initial value problems for fractional functional differential inclusions with Hadamard type derivative. Arch. Math. (Brno) 52 (2016), 263–273. | DOI | MR

[21] Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000. | Zbl

[22] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Math. Studies, vol. 204, Elsevier, Amsterdam, 2006. | MR | Zbl

[23] Momani, S.M., Hadid, S.B., Alawenh, Z.M.: Some analytical properties of solutions of differential equations of noninteger order. Int. J. Math. Math. Sci. 2004 (2004), 697–701. | DOI | MR | Zbl

[24] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, 1999. | Zbl

[25] Zhang, S.: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron. J. Differential Equ. 2006 (2006), no. 36, 1–12. | MR | Zbl

Cité par Sources :