Four-dimensional Einstein metrics from biconformal deformations
Archivum mathematicum, Tome 57 (2021) no. 5, pp. 255-283
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Biconformal deformations take place in the presence of a conformal foliation, deforming by different factors tangent to and orthogonal to the foliation. Four-manifolds endowed with a conformal foliation by surfaces present a natural context to put into effect this process. We develop the tools to calculate the transformation of the Ricci curvature under such deformations and apply our method to construct Einstein $4$-manifolds. Examples of one particular family have ends which collapse asymptotically to $\mathbb{R}^2$.
DOI :
10.5817/AM2021-5-255
Classification :
53C12, 53C18, 53C25
Keywords: Einstein manifold; conformal foliation; semi-conformal map; biconformal deformation
Keywords: Einstein manifold; conformal foliation; semi-conformal map; biconformal deformation
@article{10_5817_AM2021_5_255,
author = {Baird, Paul and Ventura, Jade},
title = {Four-dimensional {Einstein} metrics from biconformal deformations},
journal = {Archivum mathematicum},
pages = {255--283},
publisher = {mathdoc},
volume = {57},
number = {5},
year = {2021},
doi = {10.5817/AM2021-5-255},
mrnumber = {4346113},
zbl = {07442414},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-5-255/}
}
TY - JOUR AU - Baird, Paul AU - Ventura, Jade TI - Four-dimensional Einstein metrics from biconformal deformations JO - Archivum mathematicum PY - 2021 SP - 255 EP - 283 VL - 57 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-5-255/ DO - 10.5817/AM2021-5-255 LA - en ID - 10_5817_AM2021_5_255 ER -
Baird, Paul; Ventura, Jade. Four-dimensional Einstein metrics from biconformal deformations. Archivum mathematicum, Tome 57 (2021) no. 5, pp. 255-283. doi: 10.5817/AM2021-5-255
Cité par Sources :