Keywords: Einstein manifold; conformal foliation; semi-conformal map; biconformal deformation
@article{10_5817_AM2021_5_255,
author = {Baird, Paul and Ventura, Jade},
title = {Four-dimensional {Einstein} metrics from biconformal deformations},
journal = {Archivum mathematicum},
pages = {255--283},
year = {2021},
volume = {57},
number = {5},
doi = {10.5817/AM2021-5-255},
mrnumber = {4346113},
zbl = {07442414},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-5-255/}
}
TY - JOUR AU - Baird, Paul AU - Ventura, Jade TI - Four-dimensional Einstein metrics from biconformal deformations JO - Archivum mathematicum PY - 2021 SP - 255 EP - 283 VL - 57 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-5-255/ DO - 10.5817/AM2021-5-255 LA - en ID - 10_5817_AM2021_5_255 ER -
Baird, Paul; Ventura, Jade. Four-dimensional Einstein metrics from biconformal deformations. Archivum mathematicum, Tome 57 (2021) no. 5, pp. 255-283. doi: 10.5817/AM2021-5-255
[1] Baird, P., Wood, J.C.: Harmonic morphisms between Riemannian manifolds. London Math. Soc. Monographs, New Series, vol. 29, Oxford Univ. Press, 2003. | MR
[2] Besse, A.: Einstein Manifolds. Springer-Verlag, 1987. | Zbl
[3] Danielo, L.: Structures Conformes, Harmonicité et Métriques d’Einstein. Ph.D. thesis, Université de Bretagne Occidentale, 2004.
[4] Danielo, L.: Construction de métriques d’Einstein à partir de transformations biconformes. Ann. Fac. Sci. Toulouse (6) 15 (3) (2006), 553–588. | DOI | MR
[5] Dieudonné, J.: Foundations of Modern Analysis. Academic Press, 1969.
[6] Hebey, E.: Scalar curvature type problems in Riemannian geometry. Notes of a course given at the University of Rome 3. http://www.u-cergy.fr/rech/pages/hebey/
[7] Hebey, E.: Introduction à l’analyse non linéaire sur les variétés. Diderot, Paris, 1997.
[8] Hilbert, D.: Die Grundlagen der Physik. Nachr. Ges. Wiss. Göttingen (1915), 395–407.
[9] Hitchin, N.J.: On compact four-dimensional Einstein manifolds. J. Differential Geom. 9 (1974), 435–442. | DOI
[10] Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differential Geom. 20 (1984), 479–495. | DOI | Zbl
[11] Spivak, M.: A Comprehensive Introduction to Riemannian Geometry. 2nd ed., Publish or Perish, Wilmongton DE, 1979.
[12] Thorpe, J.A.: Some remarks on the Gauss-Bonnet formula. J. Math. Mech. 18 (1969), 779–786.
[13] Vaisman, I.: Conformal foliations. Kodai Math. J. 2 (1979), 26–37. | DOI
[14] Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12 (1960), 21–37. | Zbl
Cité par Sources :