Generalized $c$-almost periodic type functions in ${\mathbb{R}}^{n}$
Archivum mathematicum, Tome 57 (2021) no. 4, pp. 221-253
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we analyze multi-dimensional quasi-asymptotically $c$-almost periodic functions and their Stepanov generalizations as well as multi-dimensional Weyl $c$-almost periodic type functions. We also analyze several important subclasses of the class of multi-dimensional quasi-asymptotically $c$-almost periodic functions and reconsider the notion of semi-$c$-periodicity in the multi-dimensional setting, working in the general framework of Lebesgue spaces with variable exponent. We provide certain applications of our results to the abstract Volterra integro-differential equations in Banach spaces.
In this paper, we analyze multi-dimensional quasi-asymptotically $c$-almost periodic functions and their Stepanov generalizations as well as multi-dimensional Weyl $c$-almost periodic type functions. We also analyze several important subclasses of the class of multi-dimensional quasi-asymptotically $c$-almost periodic functions and reconsider the notion of semi-$c$-periodicity in the multi-dimensional setting, working in the general framework of Lebesgue spaces with variable exponent. We provide certain applications of our results to the abstract Volterra integro-differential equations in Banach spaces.
DOI : 10.5817/AM2021-4-221
Classification : 42A75, 43A60, 47D99
Keywords: quasi-asymptotically $c$-almost periodic type functions; $(S, {\mathbb{D}})$-asymptotically $(\omega, c)$-periodic type functions; $S$-asymptotically $(\omega _{j}, c_{j}, {\mathbb{D}}_{j})_{j\in {\mathbb{N}}_{n}}$-periodic type functions; semi-$(c_{j})_{j\in {\mathbb{N}}_{n}}$-periodic type functions; Weyl $c$-almost periodic type functions; abstract Volterra integro-differential equations
@article{10_5817_AM2021_4_221,
     author = {Kosti\'c, M.},
     title = {Generalized $c$-almost periodic type functions in ${\mathbb{R}}^{n}$},
     journal = {Archivum mathematicum},
     pages = {221--253},
     year = {2021},
     volume = {57},
     number = {4},
     doi = {10.5817/AM2021-4-221},
     mrnumber = {4346112},
     zbl = {07442413},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-4-221/}
}
TY  - JOUR
AU  - Kostić, M.
TI  - Generalized $c$-almost periodic type functions in ${\mathbb{R}}^{n}$
JO  - Archivum mathematicum
PY  - 2021
SP  - 221
EP  - 253
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-4-221/
DO  - 10.5817/AM2021-4-221
LA  - en
ID  - 10_5817_AM2021_4_221
ER  - 
%0 Journal Article
%A Kostić, M.
%T Generalized $c$-almost periodic type functions in ${\mathbb{R}}^{n}$
%J Archivum mathematicum
%D 2021
%P 221-253
%V 57
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2021-4-221/
%R 10.5817/AM2021-4-221
%G en
%F 10_5817_AM2021_4_221
Kostić, M. Generalized $c$-almost periodic type functions in ${\mathbb{R}}^{n}$. Archivum mathematicum, Tome 57 (2021) no. 4, pp. 221-253. doi: 10.5817/AM2021-4-221

[1] Alvarez, E., Castillo, S., Pinto, M.: $(\omega ,c)$-Pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells. Bound. Value Probl. 106 (2019), 1–20. | MR

[2] Alvarez, E., Castillo, S., Pinto, M.: $(\omega ,c)$-asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells. Math. Methods Appl. Sci. 43 (2020), 305–319. | DOI | MR

[3] Alvarez, E., Gómez, A., Pinto, M.: $(\omega ,c)$-periodic functions and mild solution to abstract fractional integro-differential equations. Electron. J. Qual. Theory Differ. Equ. 16 (2018), 1–8. | DOI | MR

[4] Andres, J., Pennequin, D.: Semi-periodic solutions of difference and differential equations. Bound. Value Probl. 141 (2012), 1–16, doi.org/10.1186/1687-2770-2012-141. | DOI | MR

[5] Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace Transforms and Cauchy Problems. Birkhäuser/Springer Basel AG, Basel, 2001. | MR

[6] Besicovitch, A.S.: Almost Periodic Functions. Dover Publ., New York, 1954.

[7] Blot, J., Cieutat, P., N’Guérékata, G.M.: $S$-asymptotically $\omega $-periodic functions and applications to evolution equations. Afr. Diaspora J. Math. 12 (2011), 113–121. | MR

[8] Chang, Y.-K., Wei, Y.: $S$-asymptotically Bloch type periodic solutions to some semi-linear evolution equations in Banach spaces. Acta Mathematica Sci. 41B (2021), 413–425. | MR

[9] Chaouchi, B., Kostić, M., Pilipović, S., Velinov, D.: Semi-Bloch periodic functions, semi-anti-periodic functions and applications. Chelj. Phy. Math. J. 5 (2020), 243–255. | MR

[10] Chávez, A., Khalil, K., Kostić, M., Pinto, M.: Multi-dimensional almost automorphic type functions and applications. preprint. 2021. arXiv:2103.10467.

[11] Chávez, A., Khalil, K., Kostić, M., Pinto, M.: Multi-dimensional almost periodic type functions and applications. preprint. 2020. arXiv:2012.00543.

[12] Chávez, A., Khalil, K., Kostić, M., Pinto, M.: Stepanov multi-dimensional almost periodic functions and applications. preprint. 2020. hal-03035195.

[13] Cheban, D.N.: Asymptotically Almost Periodic Solutions of Differential Equations. Hindawi Publishing Corporation, 2009. | MR

[14] Cuevas, C., de Souza, J.C.: Existence of S-asymptotically $\omega $-periodic solutions for fractional order functional integro-differential equations with infinite delay. Nonlinear Anal. 72 (2010), 1683–1689. | DOI | MR

[15] Diagana, T.: Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. Springer-Verlag, New York, 2013. | MR

[16] Diagana, T., Kostić, M.: Generalized almost periodic and generalized asymptotically almost periodic type functions in Lebesgue spaces with variable exponents $L^{p(x)}$. Filomat 34 (2020), 1629–1644. | DOI | MR

[17] Diagana, T., Kostić, M.: Recent Studies in Differential Equations. ch. Chapter 1. Generalized almost automorphic and generalized asymptotically almost automorphic type functions in Lebesgue spaces with variable exponents $L^{p(x)}$, pp. 1–28, Nova Science Publishers, New York, 2020. | MR

[18] Diening, L., Harjulehto, P., Hästüso, P., Růužicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math., Springer, Heidelberg, 2011. | DOI | MR

[19] Dimbour, W., Manou-Abi, S.M.: Asymptotically $\omega $-periodic functions in the Stepanov sense and its application for an advanced differential equation with piecewise constant argument in a Banach space. Mediterranean J. Math. 15:25 (2018), 18 pp., | DOI | MR

[20] Fan, X.L., Zhao, D.: On the spaces $L^{p(x)}(O)$ and $W^{m,p(x)}(O)$. J. Math. Anal. Appl. 263 (2001), 424–446. | MR

[21] Fečkan, M., Liu, K., Wang, J.-R.: $(w,\mathbb{T})$-Periodic solutions of impulsive evolution equations. Evol. Equ. Control Theory, doi:10.3934/eect.2021006. | DOI

[22] Fedorov, V., Kostić, M.: Multi-dimensional Weyl almost periodic type functions and applications. preprint. arXiv:2101.11754.

[23] Fink, A.M.: Almost Periodic Differential Equations. Springer-Verlag, Berlin, 1974. | Zbl

[24] Henríquez, H.R.: Asymptotically periodic solutions of abstract differential equations. Nonlinear Anal. 80 (2013), 135–149. | DOI | MR

[25] Henríquez, H.R., Pierri, M., Táboas, P.: On S-asymptotically $\omega $-periodic functions on Banach spaces and applications. -asymptotically $\omega $-periodic functions on Banach spaces and applications, J. Math. Appl. Anal. 343 (2008), 1119–1130. | DOI | MR

[26] Khalladi, M.T., Kostić, M., Pinto, M., Rahmani, A., Velinov, D.: Generalized $c$-almost periodic functions and applications. Bull. Int. Math. Virtual Inst. 11 (2021), 283–293. | MR

[27] Khalladi, M.T., Kostić, M., Pinto, M., Rahmani, A., Velinov, D.: On semi-$c$-periodic functions. J. Math. (2021), 5 pp., Article ID 6620625, | DOI | MR

[28] Khalladi, M.T., Kostić, M., Rahmani, A., Pinto, M., Velinov, D.: $c$-Almost periodic type functions and applications. Nonauton. Dyn. Syst. 7 (2020), 176–193. | DOI | MR

[29] Kostić, M.: Multi-dimensional $c$-almost periodic type functions and applications. preprint. aXiv:2012.15735.

[30] Kostić, M.: Quasi-asymptotically almost periodic functions and applications. Bull. Braz. Math. Soc. (N.S.) 52, 183–212. | DOI

[31] Kostić, M.: Selected Topics in Almost Periodicity. Book Manuscript, 2021.

[32] Kostić, M.: Weyl almost automorphic functions and applications. preprint 2021. hal-03168920.

[33] Kostić, M.: Almost Periodic and Almost Automorphic Type Solutions to Integro-Differential Equations. W. de Gruyter, Berlin, 2019. | MR

[34] Kostić, M.: Asymptotically Weyl almost periodic functions in Lebesgue spaces with variable exponents. J. Math. Anal. Appl. 498 (2021), 32 pp. | DOI | MR

[35] Kostić, M.: Multi-dimensional $(\omega , c)$-almost periodic type functions and applications. Nonauton. Dyn. Syst. 8 (2021), 136–151. | DOI | MR

[36] Kostić, M., Du, W.-S.: Generalized almost periodicity in Lebesgue spaces with variable exponents. Fixed Point Theory and Dynamical Systems with Applications, 2020, Special issue of Mathematics, Mathematics 8 928; doi:10.3390/math8060928. | DOI | MR

[37] Kostić, M., Du, W.-S.: Generalized almost periodicity in Lebesgue spaces with variable exponents, Part II. Fixed Point Theory and Dynamical Systems with Applications, Special issue of Mathematics, 2020, Mathematics 8(7), 1052; | DOI | MR

[38] Kostić, M., Kumar, V., Pinto, M.: Stepanov multi-dimensional almost automorphic type functions and applications. preprint 2021. hal-03227094.

[39] Kovanko, A.S.: Sur la compacié des sysémes de fonctions presque-périodiques généralisées de H. Weyl. C.R. (Doklady) Ac. Sc. URSS 43 (1944), 275–276.

[40] Levitan, M.: Almost Periodic Functions. G.I.T.T.L., Moscow, 1953, (in Russian).

[41] N’Guérékata, G.M.: Almost Automorphic and Almost Periodic Functions in Abstract Spaces. Kluwer Acad. Publ., Dordrecht, 2001. | MR

[42] Nguyen, P.Q.H.: On variable Lebesgue space. Ph.D. thesis, Kansas State University. Pro- Quest LLC, Ann Arbor, MI, 2011, 63 pp,. | MR

[43] Oueama-Guengai, E.R., N’Guérékata, G.M.: On $S$-asymptotically $\omega $-periodic and Bloch periodic mild solutions to some fractional differential equations in abstract spaces. Math. Methods Appl. Sci. 41 (2018), 9116–9122. | DOI | MR

[44] Pankov, A.A.: Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations. Kluwer Acad. Publ., Dordrecht, 1990.

[45] Xie, R., Zhang, C.: Space of $\omega $-periodic limit functions and its applications to an abstract Cauchy problem. J. Function Spaces 2015 (2015), 10 pp., Article ID 953540, | DOI | MR

[46] Zaidman, S.: Almost-Periodic Functions in Abstract Spaces. Pitman Research Notes in Math., vol. 126, Pitman, Boston, 1985.

Cité par Sources :