Generalized $c$-almost periodic type functions in ${\mathbb{R}}^{n}$
Archivum mathematicum, Tome 57 (2021) no. 4, pp. 221-253
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, we analyze multi-dimensional quasi-asymptotically $c$-almost periodic functions and their Stepanov generalizations as well as multi-dimensional Weyl $c$-almost periodic type functions. We also analyze several important subclasses of the class of multi-dimensional quasi-asymptotically $c$-almost periodic functions and reconsider the notion of semi-$c$-periodicity in the multi-dimensional setting, working in the general framework of Lebesgue spaces with variable exponent. We provide certain applications of our results to the abstract Volterra integro-differential equations in Banach spaces.
DOI :
10.5817/AM2021-4-221
Classification :
42A75, 43A60, 47D99
Keywords: quasi-asymptotically $c$-almost periodic type functions; $(S, {\mathbb{D}})$-asymptotically $(\omega, c)$-periodic type functions; $S$-asymptotically $(\omega _{j}, c_{j}, {\mathbb{D}}_{j})_{j\in {\mathbb{N}}_{n}}$-periodic type functions; semi-$(c_{j})_{j\in {\mathbb{N}}_{n}}$-periodic type functions; Weyl $c$-almost periodic type functions; abstract Volterra integro-differential equations
Keywords: quasi-asymptotically $c$-almost periodic type functions; $(S, {\mathbb{D}})$-asymptotically $(\omega, c)$-periodic type functions; $S$-asymptotically $(\omega _{j}, c_{j}, {\mathbb{D}}_{j})_{j\in {\mathbb{N}}_{n}}$-periodic type functions; semi-$(c_{j})_{j\in {\mathbb{N}}_{n}}$-periodic type functions; Weyl $c$-almost periodic type functions; abstract Volterra integro-differential equations
@article{10_5817_AM2021_4_221,
author = {Kosti\'c, M.},
title = {Generalized $c$-almost periodic type functions in ${\mathbb{R}}^{n}$},
journal = {Archivum mathematicum},
pages = {221--253},
publisher = {mathdoc},
volume = {57},
number = {4},
year = {2021},
doi = {10.5817/AM2021-4-221},
mrnumber = {4346112},
zbl = {07442413},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-4-221/}
}
TY - JOUR
AU - Kostić, M.
TI - Generalized $c$-almost periodic type functions in ${\mathbb{R}}^{n}$
JO - Archivum mathematicum
PY - 2021
SP - 221
EP - 253
VL - 57
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-4-221/
DO - 10.5817/AM2021-4-221
LA - en
ID - 10_5817_AM2021_4_221
ER -
Kostić, M. Generalized $c$-almost periodic type functions in ${\mathbb{R}}^{n}$. Archivum mathematicum, Tome 57 (2021) no. 4, pp. 221-253. doi: 10.5817/AM2021-4-221
Cité par Sources :