Algebraic restrictions on geometric realizations of curvature models
Archivum mathematicum, Tome 57 (2021) no. 3, pp. 175-194 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We generalize a previous result concerning the geometric realizability of model spaces as curvature homogeneous spaces, and investigate applications of this approach. We find algebraic restrictions to realize a model space as a curvature homogeneous space up to any order, and study the implications of geometrically realizing a model space as a locally symmetric space. We also present algebraic restrictions to realize a curvature model as a homothety curvature homogeneous space up to even orders, and demonstrate that for certain model spaces and realizations, homothety curvature homogeneity implies curvature homogeneity.
We generalize a previous result concerning the geometric realizability of model spaces as curvature homogeneous spaces, and investigate applications of this approach. We find algebraic restrictions to realize a model space as a curvature homogeneous space up to any order, and study the implications of geometrically realizing a model space as a locally symmetric space. We also present algebraic restrictions to realize a curvature model as a homothety curvature homogeneous space up to even orders, and demonstrate that for certain model spaces and realizations, homothety curvature homogeneity implies curvature homogeneity.
DOI : 10.5817/AM2021-3-175
Classification : 15A69, 53B15, 53B30
Keywords: curvature model; curvature homogeneous; homothethy curvature homogeneous
@article{10_5817_AM2021_3_175,
     author = {Dunn, Corey and Smith, Zo\"e},
     title = {Algebraic restrictions on geometric realizations of curvature models},
     journal = {Archivum mathematicum},
     pages = {175--194},
     year = {2021},
     volume = {57},
     number = {3},
     doi = {10.5817/AM2021-3-175},
     mrnumber = {4306176},
     zbl = {07396182},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-3-175/}
}
TY  - JOUR
AU  - Dunn, Corey
AU  - Smith, Zoë
TI  - Algebraic restrictions on geometric realizations of curvature models
JO  - Archivum mathematicum
PY  - 2021
SP  - 175
EP  - 194
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-3-175/
DO  - 10.5817/AM2021-3-175
LA  - en
ID  - 10_5817_AM2021_3_175
ER  - 
%0 Journal Article
%A Dunn, Corey
%A Smith, Zoë
%T Algebraic restrictions on geometric realizations of curvature models
%J Archivum mathematicum
%D 2021
%P 175-194
%V 57
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2021-3-175/
%R 10.5817/AM2021-3-175
%G en
%F 10_5817_AM2021_3_175
Dunn, Corey; Smith, Zoë. Algebraic restrictions on geometric realizations of curvature models. Archivum mathematicum, Tome 57 (2021) no. 3, pp. 175-194. doi: 10.5817/AM2021-3-175

[1] Belger, M., Kowalski, O.: Riemannian Metrics with the Prescribed Curvature Tensor and all Its Covariant Derivatives at One Point. Math. Nachr. 168 (1994), no. 1, 209–225. | MR

[2] Cahen, M., Leroy, J., Parker, M., Tricerri, F., Vanhecke, L.: Lorentz manifolds modeled on a Lorentz symmetric space. J. Geom. Phys. 7 (1990), 571–581. | DOI | MR

[3] Calvaruso, G.: Homogeneous structures on three-dimensional Lorentzian manifolds. J. Geom. Phys. 57 (2007), 1279–1291. | DOI | MR | Zbl

[4] Dunn, C., Luna, A., Sbiti, S.: A common generalization of curvature homogeneity theories. J. Geom. 111 (1) (2020), 17 pp. | DOI | MR

[5] Dunn, C., McDonald, C.: Singer invariants and various types of curvature homogeneity. Ann. Global Anal. Geom. 45 (2014), no. 4, 303–317. | DOI | MR

[6] García-Río, E., Gilkey, P., Nikčević, S.: Homothety curvature homogeneity and homothety homogeneity. Ann. Global Anal. Geom. 48 (2015), no. 2, 149–170. | DOI | MR

[7] Gilkey, P.: Relating algebraic properties of the curvature tensor to geometry. Novi Sad J. Math. 29 (1999), no. 3, 109–119. | MR

[8] Gilkey, P.: Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor. World Scientific, 2001. | MR

[9] Gilkey, P.: The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds. Imperial College Press, 2007. | MR | Zbl

[10] Gray, A.: Einstein-like manifolds which are not Einstein. Geom. Dedicata 7 (1978), 259–280. DOI:  | DOI | MR | Zbl

[11] Klinger, R.: A basis that reduces to zero as many curvature components as possible. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 61 (1991), 243–248. | MR

[12] Kowalski, O., Prüfer, F.: Curvature tensors in dimension four which do not belong to any curvature homogeneous space. Arch. Math. (Brno) 30 (1994), no. 1, 45–57. | MR

[13] Kowalski, O., Vanžurová, A.: On curvature homogeneous spaces of type (1,3). Math. Nachr. 284 (2011), no. 17–18, 2127–2132. | DOI | MR

[14] Kowalski, O., Vanžurová, A.: On a generalization of curvature homogeneous spaces. Results Math. 63 (2013), 129–134. | DOI | MR

[15] Lee, J.: Riemannian Manifolds: An Introduction to Curvature. Springer-Verlag New York, Inc., 1997. | MR

[16] Singer, I.M.: Infinitesimally homogeneous spaces. Commun. Pure Appl. Math 13 (1960), 685–697. | DOI | MR | Zbl

[17] Tricerri, F., Vanhecke, L.: Variétés Riemanniennes dont le tenseur de courbure est celui d’un espace symétrique Riemannien irréductible. C.R. Acad. Sci., Paris, Sér I (1986), no. 302, 233–235. | MR

[18] Tsankov, Y.: A characterization of $n$-dimensional hypersurfaces in $\mathbb{R}^{n+1}$ with commuting curvature operators. Banach Center Publ. 69 (2005), 205–209. | DOI | MR

Cité par Sources :