Keywords: curvature model; curvature homogeneous; homothethy curvature homogeneous
@article{10_5817_AM2021_3_175,
author = {Dunn, Corey and Smith, Zo\"e},
title = {Algebraic restrictions on geometric realizations of curvature models},
journal = {Archivum mathematicum},
pages = {175--194},
year = {2021},
volume = {57},
number = {3},
doi = {10.5817/AM2021-3-175},
mrnumber = {4306176},
zbl = {07396182},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-3-175/}
}
TY - JOUR AU - Dunn, Corey AU - Smith, Zoë TI - Algebraic restrictions on geometric realizations of curvature models JO - Archivum mathematicum PY - 2021 SP - 175 EP - 194 VL - 57 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-3-175/ DO - 10.5817/AM2021-3-175 LA - en ID - 10_5817_AM2021_3_175 ER -
Dunn, Corey; Smith, Zoë. Algebraic restrictions on geometric realizations of curvature models. Archivum mathematicum, Tome 57 (2021) no. 3, pp. 175-194. doi: 10.5817/AM2021-3-175
[1] Belger, M., Kowalski, O.: Riemannian Metrics with the Prescribed Curvature Tensor and all Its Covariant Derivatives at One Point. Math. Nachr. 168 (1994), no. 1, 209–225. | MR
[2] Cahen, M., Leroy, J., Parker, M., Tricerri, F., Vanhecke, L.: Lorentz manifolds modeled on a Lorentz symmetric space. J. Geom. Phys. 7 (1990), 571–581. | DOI | MR
[3] Calvaruso, G.: Homogeneous structures on three-dimensional Lorentzian manifolds. J. Geom. Phys. 57 (2007), 1279–1291. | DOI | MR | Zbl
[4] Dunn, C., Luna, A., Sbiti, S.: A common generalization of curvature homogeneity theories. J. Geom. 111 (1) (2020), 17 pp. | DOI | MR
[5] Dunn, C., McDonald, C.: Singer invariants and various types of curvature homogeneity. Ann. Global Anal. Geom. 45 (2014), no. 4, 303–317. | DOI | MR
[6] García-Río, E., Gilkey, P., Nikčević, S.: Homothety curvature homogeneity and homothety homogeneity. Ann. Global Anal. Geom. 48 (2015), no. 2, 149–170. | DOI | MR
[7] Gilkey, P.: Relating algebraic properties of the curvature tensor to geometry. Novi Sad J. Math. 29 (1999), no. 3, 109–119. | MR
[8] Gilkey, P.: Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor. World Scientific, 2001. | MR
[9] Gilkey, P.: The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds. Imperial College Press, 2007. | MR | Zbl
[10] Gray, A.: Einstein-like manifolds which are not Einstein. Geom. Dedicata 7 (1978), 259–280. DOI: | DOI | MR | Zbl
[11] Klinger, R.: A basis that reduces to zero as many curvature components as possible. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 61 (1991), 243–248. | MR
[12] Kowalski, O., Prüfer, F.: Curvature tensors in dimension four which do not belong to any curvature homogeneous space. Arch. Math. (Brno) 30 (1994), no. 1, 45–57. | MR
[13] Kowalski, O., Vanžurová, A.: On curvature homogeneous spaces of type (1,3). Math. Nachr. 284 (2011), no. 17–18, 2127–2132. | DOI | MR
[14] Kowalski, O., Vanžurová, A.: On a generalization of curvature homogeneous spaces. Results Math. 63 (2013), 129–134. | DOI | MR
[15] Lee, J.: Riemannian Manifolds: An Introduction to Curvature. Springer-Verlag New York, Inc., 1997. | MR
[16] Singer, I.M.: Infinitesimally homogeneous spaces. Commun. Pure Appl. Math 13 (1960), 685–697. | DOI | MR | Zbl
[17] Tricerri, F., Vanhecke, L.: Variétés Riemanniennes dont le tenseur de courbure est celui d’un espace symétrique Riemannien irréductible. C.R. Acad. Sci., Paris, Sér I (1986), no. 302, 233–235. | MR
[18] Tsankov, Y.: A characterization of $n$-dimensional hypersurfaces in $\mathbb{R}^{n+1}$ with commuting curvature operators. Banach Center Publ. 69 (2005), 205–209. | DOI | MR
Cité par Sources :