Keywords: generalized Riccati differential equation; global solutions
@article{10_5817_AM2021_3_151,
author = {Jaro\v{s}, Jaroslav},
title = {A new look at an old comparison theorem},
journal = {Archivum mathematicum},
pages = {151--156},
year = {2021},
volume = {57},
number = {3},
doi = {10.5817/AM2021-3-151},
mrnumber = {4306174},
zbl = {07396180},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-3-151/}
}
Jaroš, Jaroslav. A new look at an old comparison theorem. Archivum mathematicum, Tome 57 (2021) no. 3, pp. 151-156. doi: 10.5817/AM2021-3-151
[1] Došlý, O., Řehák, P.: Half-linear differential equations. North-Holland, Elsevier, Amsterdam, 2005. | MR | Zbl
[2] Erbe, L.: Integral comparison theorems for scalar Riccati equations and applications. Canad. Math. Bull. 25 (1982), 82–97. | DOI | MR
[3] Hasil, P.: Conditional oscillation of half-linear differential equations with periodic coefficients. Arch. Math. (Brno) 44 (2008), 119–131. | MR
[4] Hasil, P., Veselý, M.: Oscillation and non-oscillation of half-linear differential equations with coefficients having mean values. Open Math. 16 (1) (2018), 507–521. | DOI | MR
[5] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillatory solutions of planar half-linear differential systems: a Riccati equation approach. EJQTDE 92 (2018), 1–28. | MR
[6] Mirzov, J.D.: Asymptotic Properties of Solutions of Systems of Nonlinear Nonautonomous Ordinary Differential Equations. Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 14 (2004), 175 pp. | MR | Zbl
[7] Stafford, R.A., Heidel, J.W.: A new comparison theorem for scalar Riccati equations. Bull. Amer. Math. Soc. 80 (1974), 754–757. | DOI | MR
[8] Travis, C.C.: Remarks on a comparison theorem for scalar Riccati equations. Proc. Amer. Math. Soc. 52 (1975), 311–314. | DOI | MR
Cité par Sources :