A new look at an old comparison theorem
Archivum mathematicum, Tome 57 (2021) no. 3, pp. 151-156 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present an integral comparison theorem which guarantees the global existence of a solution of the generalized Riccati equation on the given interval $[a,b)$ when it is known that certain majorant Riccati equation has a global solution on $[a,b)$.
We present an integral comparison theorem which guarantees the global existence of a solution of the generalized Riccati equation on the given interval $[a,b)$ when it is known that certain majorant Riccati equation has a global solution on $[a,b)$.
DOI : 10.5817/AM2021-3-151
Classification : 34C10
Keywords: generalized Riccati differential equation; global solutions
@article{10_5817_AM2021_3_151,
     author = {Jaro\v{s}, Jaroslav},
     title = {A new look at an old comparison theorem},
     journal = {Archivum mathematicum},
     pages = {151--156},
     year = {2021},
     volume = {57},
     number = {3},
     doi = {10.5817/AM2021-3-151},
     mrnumber = {4306174},
     zbl = {07396180},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-3-151/}
}
TY  - JOUR
AU  - Jaroš, Jaroslav
TI  - A new look at an old comparison theorem
JO  - Archivum mathematicum
PY  - 2021
SP  - 151
EP  - 156
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-3-151/
DO  - 10.5817/AM2021-3-151
LA  - en
ID  - 10_5817_AM2021_3_151
ER  - 
%0 Journal Article
%A Jaroš, Jaroslav
%T A new look at an old comparison theorem
%J Archivum mathematicum
%D 2021
%P 151-156
%V 57
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2021-3-151/
%R 10.5817/AM2021-3-151
%G en
%F 10_5817_AM2021_3_151
Jaroš, Jaroslav. A new look at an old comparison theorem. Archivum mathematicum, Tome 57 (2021) no. 3, pp. 151-156. doi: 10.5817/AM2021-3-151

[1] Došlý, O., Řehák, P.: Half-linear differential equations. North-Holland, Elsevier, Amsterdam, 2005. | MR | Zbl

[2] Erbe, L.: Integral comparison theorems for scalar Riccati equations and applications. Canad. Math. Bull. 25 (1982), 82–97. | DOI | MR

[3] Hasil, P.: Conditional oscillation of half-linear differential equations with periodic coefficients. Arch. Math. (Brno) 44 (2008), 119–131. | MR

[4] Hasil, P., Veselý, M.: Oscillation and non-oscillation of half-linear differential equations with coefficients having mean values. Open Math. 16 (1) (2018), 507–521. | DOI | MR

[5] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillatory solutions of planar half-linear differential systems: a Riccati equation approach. EJQTDE 92 (2018), 1–28. | MR

[6] Mirzov, J.D.: Asymptotic Properties of Solutions of Systems of Nonlinear Nonautonomous Ordinary Differential Equations. Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 14 (2004), 175 pp. | MR | Zbl

[7] Stafford, R.A., Heidel, J.W.: A new comparison theorem for scalar Riccati equations. Bull. Amer. Math. Soc. 80 (1974), 754–757. | DOI | MR

[8] Travis, C.C.: Remarks on a comparison theorem for scalar Riccati equations. Proc. Amer. Math. Soc. 52 (1975), 311–314. | DOI | MR

Cité par Sources :