Global solvability criteria for quaternionic Riccati equations
Archivum mathematicum, Tome 57 (2021) no. 2, pp. 83-99 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Some global existence criteria for quaternionic Riccati equations are established. Two of them are used to prove a completely non conjugation theorem for solutions of linear systems of ordinary differential equations.
Some global existence criteria for quaternionic Riccati equations are established. Two of them are used to prove a completely non conjugation theorem for solutions of linear systems of ordinary differential equations.
DOI : 10.5817/AM2021-2-83
Classification : 34C99
Keywords: Riccati equations; quaternions; the matrix representation of quaternions; global solvability; the solutions of linear systems satisfying of the completely non conjugation condition
@article{10_5817_AM2021_2_83,
     author = {Grigorian, G.A.},
     title = {Global solvability criteria for quaternionic {Riccati} equations},
     journal = {Archivum mathematicum},
     pages = {83--99},
     year = {2021},
     volume = {57},
     number = {2},
     doi = {10.5817/AM2021-2-83},
     mrnumber = {4306170},
     zbl = {07361067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-2-83/}
}
TY  - JOUR
AU  - Grigorian, G.A.
TI  - Global solvability criteria for quaternionic Riccati equations
JO  - Archivum mathematicum
PY  - 2021
SP  - 83
EP  - 99
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-2-83/
DO  - 10.5817/AM2021-2-83
LA  - en
ID  - 10_5817_AM2021_2_83
ER  - 
%0 Journal Article
%A Grigorian, G.A.
%T Global solvability criteria for quaternionic Riccati equations
%J Archivum mathematicum
%D 2021
%P 83-99
%V 57
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2021-2-83/
%R 10.5817/AM2021-2-83
%G en
%F 10_5817_AM2021_2_83
Grigorian, G.A. Global solvability criteria for quaternionic Riccati equations. Archivum mathematicum, Tome 57 (2021) no. 2, pp. 83-99. doi: 10.5817/AM2021-2-83

[1] Campos, J., Mawhin, J.: Periodic solutions of quaternionic-valued ordinary differential equations. Annali di Mathematica 185 (2006), 109–127. | DOI | MR

[2] Christiano, V., Smarandache, F.: An Exact Mapping from Navier - Stokes Equation to Schrodinger Equation via Riccati Equation. Progress in Phys. 1 (2008), 38–39. | MR

[3] Gibbon, J.D., Halm, D.D., Kerr, R.M., Roulstone, I.: Quaternions and particle dynamics in the Euler fluid equations. Nonlinearity 19 (2006), 1962–1983. | DOI | MR

[4] Grigorian, G.A.: On two comparison tests for second-order linear ordinary differential equations. Differ. Uravn. 47 (9) (2011), 1225–1240, Russian. Translation in Differ. Equ. 47 (2011), no. 9, 1237–1252. | MR

[5] Grigorian, G.A.: Two comparison criteria for scalar Riccati equations with applications. Russian Math. (Iz. VUZ) 56 (11) (2012), 17–30. | DOI | MR

[6] Grigorian, G.A.: Global solvability of scalar Riccati equations. Izv. Vissh. Uchebn. Zaved. Mat. 3 (2015), 35–48. | MR

[7] Grigorian, G.A.: Global solvability criteria for scalar Riccati equations with complex coefficients. Differ. Uravn. 53 (4) (2017), 459–464. | MR

[8] Hartman, Ph.: Ordinary differential equations. Classics in Applied Mathematics, vol. 38, SIAM, Philadelphia, 2002. | MR | Zbl

[9] Leschke, K., Morya, K.: Application of quaternionic holomorphic geometry to minimal surfaces. Complex Manifolds 3 (2006), 282–300. | MR

[10] Wilzinski, P.: Quaternionic - valued differential equations. The Riccati equation. J. Differential Equations 247 (2009), 2163–2187. | DOI | MR

[11] Zoladek, H.: Classifications of diffeomormhisms of $S^4$ induced by quaternionic Riccati equations with periodic coefficients. Topol. methods Nonlinear Anal. 33 (2009), 205–215. | DOI | MR

Cité par Sources :