On some Diophantine equations involving balancing numbers
Archivum mathematicum, Tome 57 (2021) no. 2, pp. 113-130 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we find all the solutions of the Diophantine equation $B_1^p+2B_2^p+\cdots +kB_k^p=B_n^q$ in positive integer variables $(k, n)$, where $B_i$ is the $i^{th}$ balancing number if the exponents $p$, $ q$ are included in the set $\lbrace 1,2\rbrace $.
In this paper, we find all the solutions of the Diophantine equation $B_1^p+2B_2^p+\cdots +kB_k^p=B_n^q$ in positive integer variables $(k, n)$, where $B_i$ is the $i^{th}$ balancing number if the exponents $p$, $ q$ are included in the set $\lbrace 1,2\rbrace $.
DOI : 10.5817/AM2021-2-113
Classification : 11B39
Keywords: balancing numbers; Pell numbers; Diophantine equation
@article{10_5817_AM2021_2_113,
     author = {Tchammou, Euloge and Togb\'e, Alain},
     title = {On some {Diophantine} equations involving balancing numbers},
     journal = {Archivum mathematicum},
     pages = {113--130},
     year = {2021},
     volume = {57},
     number = {2},
     doi = {10.5817/AM2021-2-113},
     mrnumber = {4306172},
     zbl = {07361069},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-2-113/}
}
TY  - JOUR
AU  - Tchammou, Euloge
AU  - Togbé, Alain
TI  - On some Diophantine equations involving balancing numbers
JO  - Archivum mathematicum
PY  - 2021
SP  - 113
EP  - 130
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-2-113/
DO  - 10.5817/AM2021-2-113
LA  - en
ID  - 10_5817_AM2021_2_113
ER  - 
%0 Journal Article
%A Tchammou, Euloge
%A Togbé, Alain
%T On some Diophantine equations involving balancing numbers
%J Archivum mathematicum
%D 2021
%P 113-130
%V 57
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2021-2-113/
%R 10.5817/AM2021-2-113
%G en
%F 10_5817_AM2021_2_113
Tchammou, Euloge; Togbé, Alain. On some Diophantine equations involving balancing numbers. Archivum mathematicum, Tome 57 (2021) no. 2, pp. 113-130. doi: 10.5817/AM2021-2-113

[1] Altassan, A., Luca, F.: On the Diophantine equation $\sum _{j=1}^{k}jF_j^p=F_n^q$. J. Number Theory 217 (2020), 256–277. | MR

[2] Behera, A., Panda, G.K.: On the square roots of triangular numbers. Fibonacci Quart. 37 (2) (1999), 98–105. | MR

[3] Catarino, P., Campos, H., Vasco, P.: On some identities for balancing and cobalancing numbers. Ann. Math. Inform. 45 (2015), 11–24. | MR

[4] Gueth, K., Luca, F., Szalay, L.: Solutions to $F_1^p+2F_2^p+\dots +kF_k^p=F_n^q$ with small given exponents. Proc. Japan Acad. Ser. A, Math. Sci. 96 (4) (2020), 33–37. | MR

[5] Horadam, A.F.: Pell identities. Fibonacci Quart. 9 (3) (1971), 245–263. | MR

[6] Niven, I., Zuckerman, H.S., Montgomery, H.L.: An Introduction to the Theory of Numbers. fifth edition ed., John Wiley & Sons, Inc., New York, 1991. | MR

[7] Olajos, P.: Properties of Balancing, Cobalancing and Generalized Balancing Numbers. Ann. Math. Inform. 37 (2010), 125–138. | MR

[8] Panda, G.K.: Some Fascinating Properties of Balancing Numbers. Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications, Cong. Numer., vol. 194, 2009, pp. 185–189. | MR

[9] Panda, G.K., Ray, P.K.: Some links of balancing and cobalancing numbers with Pell and associated Pell numbers. Bul. Inst. Math. Acad. Sinica 6 (2011), 41–72. | MR

[10] Ray, P.K.: Balancing and cobalancing numbers. Ph.D. thesis, National Institute of Technology, Rourkela, India, 2009.

[11] Soydan, G., Németh, L., Szalay, L.: On the diophantine equation $\sum _{j=1}^{k}jF_j^p=F_n^q$. Arch. Math. (Brno) 54 (2008), 177–188. | MR

[12] Tchammou, E., Togbé, A.: On the diophantine equation $\sum _{j=1}^{k}jP_j^p=P_n^q$. Acta Math. Hungar. 162 (2) (2020), 647–676. | DOI | MR

Cité par Sources :