Keywords: balancing numbers; Pell numbers; Diophantine equation
@article{10_5817_AM2021_2_113,
author = {Tchammou, Euloge and Togb\'e, Alain},
title = {On some {Diophantine} equations involving balancing numbers},
journal = {Archivum mathematicum},
pages = {113--130},
year = {2021},
volume = {57},
number = {2},
doi = {10.5817/AM2021-2-113},
mrnumber = {4306172},
zbl = {07361069},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-2-113/}
}
TY - JOUR AU - Tchammou, Euloge AU - Togbé, Alain TI - On some Diophantine equations involving balancing numbers JO - Archivum mathematicum PY - 2021 SP - 113 EP - 130 VL - 57 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-2-113/ DO - 10.5817/AM2021-2-113 LA - en ID - 10_5817_AM2021_2_113 ER -
Tchammou, Euloge; Togbé, Alain. On some Diophantine equations involving balancing numbers. Archivum mathematicum, Tome 57 (2021) no. 2, pp. 113-130. doi: 10.5817/AM2021-2-113
[1] Altassan, A., Luca, F.: On the Diophantine equation $\sum _{j=1}^{k}jF_j^p=F_n^q$. J. Number Theory 217 (2020), 256–277. | MR
[2] Behera, A., Panda, G.K.: On the square roots of triangular numbers. Fibonacci Quart. 37 (2) (1999), 98–105. | MR
[3] Catarino, P., Campos, H., Vasco, P.: On some identities for balancing and cobalancing numbers. Ann. Math. Inform. 45 (2015), 11–24. | MR
[4] Gueth, K., Luca, F., Szalay, L.: Solutions to $F_1^p+2F_2^p+\dots +kF_k^p=F_n^q$ with small given exponents. Proc. Japan Acad. Ser. A, Math. Sci. 96 (4) (2020), 33–37. | MR
[5] Horadam, A.F.: Pell identities. Fibonacci Quart. 9 (3) (1971), 245–263. | MR
[6] Niven, I., Zuckerman, H.S., Montgomery, H.L.: An Introduction to the Theory of Numbers. fifth edition ed., John Wiley & Sons, Inc., New York, 1991. | MR
[7] Olajos, P.: Properties of Balancing, Cobalancing and Generalized Balancing Numbers. Ann. Math. Inform. 37 (2010), 125–138. | MR
[8] Panda, G.K.: Some Fascinating Properties of Balancing Numbers. Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications, Cong. Numer., vol. 194, 2009, pp. 185–189. | MR
[9] Panda, G.K., Ray, P.K.: Some links of balancing and cobalancing numbers with Pell and associated Pell numbers. Bul. Inst. Math. Acad. Sinica 6 (2011), 41–72. | MR
[10] Ray, P.K.: Balancing and cobalancing numbers. Ph.D. thesis, National Institute of Technology, Rourkela, India, 2009.
[11] Soydan, G., Németh, L., Szalay, L.: On the diophantine equation $\sum _{j=1}^{k}jF_j^p=F_n^q$. Arch. Math. (Brno) 54 (2008), 177–188. | MR
[12] Tchammou, E., Togbé, A.: On the diophantine equation $\sum _{j=1}^{k}jP_j^p=P_n^q$. Acta Math. Hungar. 162 (2) (2020), 647–676. | DOI | MR
Cité par Sources :