Keywords: Heisenberg groups; oscillator groups; left-invariant Douglas $(\alpha, \beta )$-metrics
@article{10_5817_AM2021_2_101,
author = {Nasehi, Mehri},
title = {On the {Finsler} geometry of the {Heisenberg} group $H_{2n+1}$ and its extension},
journal = {Archivum mathematicum},
pages = {101--111},
year = {2021},
volume = {57},
number = {2},
doi = {10.5817/AM2021-2-101},
mrnumber = {4306171},
zbl = {07361068},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-2-101/}
}
TY - JOUR
AU - Nasehi, Mehri
TI - On the Finsler geometry of the Heisenberg group $H_{2n+1}$ and its extension
JO - Archivum mathematicum
PY - 2021
SP - 101
EP - 111
VL - 57
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-2-101/
DO - 10.5817/AM2021-2-101
LA - en
ID - 10_5817_AM2021_2_101
ER -
Nasehi, Mehri. On the Finsler geometry of the Heisenberg group $H_{2n+1}$ and its extension. Archivum mathematicum, Tome 57 (2021) no. 2, pp. 101-111. doi: 10.5817/AM2021-2-101
[1] Aradi, B.: Left invariant Finsler manifolds are generalized Berwald. Eur. J. Pure Appl. Math. 8 (2015), 118–125. | MR
[2] Arnold, V.I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications a l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16 (1) (1966), 319–361. | DOI | MR
[3] Bacso, S., Cheng, X., Shen, Z.: Curvature properties of $(\alpha ,\beta )$-metrics. Finsler Geometry, Sapporo 2005, Adv. Stud. Pure Math., vol. 48, 2007, pp. 73–110. | MR
[4] Berndt, J., Tricceri, F., Vanhecke, L.: Generalized Heisenberg Groups and Damek Ricci Harmonic Spaces. Lecture Notes in Math., vol. 1598, Springer, Heidelberg, 1995. | MR
[5] Biggs, R., Remsing, C.C.: Some remarks on the oscillator group. Differential Geom. Appl. 35 (2014), 199–209. | DOI | MR
[6] Chern, S.S., Shen, Z.: Riemann-Finsler geometry. World Scientific, Singapore, 2005. | MR
[7] Deng, S.: The S-curvature of homogeneous Randers spaces. Differential Geom. Appl. 27 (2010), 75–84. | DOI | MR
[8] Deng, S.: Homogeneous Finsler spaces. Springer, New York, 2012. | MR
[9] Deng, S., Hosseini, M., Liu, H., Salimi Moghaddam, H.R.: On the left invariant $(\alpha ,\beta )$-metrics on some Lie groups. to appear in Houston Journal of Mathematics. | MR
[10] Deng, S., Hou, Z.: Invariant Randers metrics on homogeneous Riemannian manifolds. J. Phys. A Math. Gen. 37 (2004), 4353–4360. | DOI | MR | Zbl
[11] Deng, S., Hu, Z.: On flag curvature of homogeneous Randers spaces. Canad. J. Math. 65 (2013), 66–81. | DOI | MR
[12] Fasihi-Ramandi, Gh., Azami, S.: Geometry of left invariant Randers metric on the Heisenberg group. submitted.
[13] Gadea, P.M., Oubina, J.A.: Homogeneous Lorentzian structures on the oscillator groups. Arch. Math. (Basel) 73 (1999), 311–320. | DOI | MR
[14] Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. Un. Mat. Ital. B (7) 5 (1) (1991), 189–246. | MR | Zbl
[15] Latifi, D.: Bi-invariant Randers metrics on Lie groups. Publ. Math. Debrecen 76 (1–2) (2010), 219–226. | MR
[16] Lengyelné Tóth, A., Kovács, Z.: Left invariant Randers metrics on the 3-dimensional Heisenberg group. Publ. Math. Debrecen 85 (1–2) (2014), 161–179. | DOI | MR
[17] Lengyelné Tóth, A., Kovács, Z.: Curvatures of left invariant Randers metric on the five-dimensional Heisenberg group. Balkan J. Geom. Appl. 22 (1) (2017), 33–40. | MR
[18] Liu, H., Deng, S.: Homogeneous $(\alpha ,\beta )$-metrics of Douglas type. Forum Math. (2014), 1–17. | MR
[19] Milnor, J.: Curvatures of left-invariant metrics on Lie groups. Adv. Math. 21 (3) (1976), 293–329. | DOI | MR
[20] Nasehi, M.: On 5-dimensional 2-step homogeneous Randers nilmanifolds of Douglas type. Bull. Iranian Math. Soc. 43 (2017), 695–706. | MR
[21] Nasehi, M.: On the Geometry of Higher Dimensional Heisenberg Groups. Mediterr. J. Math. 29 (2019), 1–17. | MR
[22] Nasehi, M., Aghasi, M.: On the geometry of Douglas Heisenberg group. 48th Annual Irannian Mathematics Conference, 2017, pp. 1720–1723.
[23] Parhizkar, M., Salimi Moghaddam, H.R.: Geodesic vector fields of invariant $(\alpha ,\beta )$-metrics on homogeneous spaces. Int. Electron. J. Geom. 6 (2) (2013), 39–44. | MR
[24] Rahmani, S.: Metriques de Lorentz sur les groupes de Lie unimodulaires de dimension 3. J. Geom. Phys. 9 (1992), 295–302. | DOI | MR
[25] Vukmirovic, S.: Classification of left-invariant metrics on the Heisenberg group. J. Geom. Phys. 94 (2015), 72–80. | DOI | MR
Cité par Sources :