On the Finsler geometry of the Heisenberg group $H_{2n+1}$ and its extension
Archivum mathematicum, Tome 57 (2021) no. 2, pp. 101-111.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We first classify left invariant Douglas $(\alpha , \beta )$-metrics on the Heisenberg group $H_{2n+1}$ of dimension $2n + 1$ and its extension i.e., oscillator group. Then we explicitly give the flag curvature formulas and geodesic vectors for these spaces, when equipped with these metrics. We also explicitly obtain $S$-curvature formulas of left invariant Randers metrics of Douglas type on these spaces and obtain a comparison on geometry of these spaces, when equipped with left invariant Douglas $(\alpha , \beta )$-metrics. More exactly, we show that although the results concerning bi-invariant Douglas $(\alpha ,\beta )$-metrics on these spaces are similar, several results concerning left invariant Douglas $(\alpha ,\beta )$-metrics on these spaces are different. For example we prove that the existence of left-invariant Matsumoto, Kropina and Randers metrics of Berwald type on oscillator groups can not extend to Heisenberg groups. Also we prove that oscillator groups have always vanishing $S$-curvature, whereas this can not occur on Heisenberg groups. Moreover, we prove that there exist new geodesic vectors on oscillator groups which can not extend to the Heisenberg groups.
DOI : 10.5817/AM2021-2-101
Classification : 53C30, 53C60
Keywords: Heisenberg groups; oscillator groups; left-invariant Douglas $(\alpha, \beta )$-metrics
@article{10_5817_AM2021_2_101,
     author = {Nasehi, Mehri},
     title = {On the {Finsler} geometry of the {Heisenberg} group $H_{2n+1}$ and its extension},
     journal = {Archivum mathematicum},
     pages = {101--111},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2021},
     doi = {10.5817/AM2021-2-101},
     mrnumber = {4306171},
     zbl = {07361068},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-2-101/}
}
TY  - JOUR
AU  - Nasehi, Mehri
TI  - On the Finsler geometry of the Heisenberg group $H_{2n+1}$ and its extension
JO  - Archivum mathematicum
PY  - 2021
SP  - 101
EP  - 111
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-2-101/
DO  - 10.5817/AM2021-2-101
LA  - en
ID  - 10_5817_AM2021_2_101
ER  - 
%0 Journal Article
%A Nasehi, Mehri
%T On the Finsler geometry of the Heisenberg group $H_{2n+1}$ and its extension
%J Archivum mathematicum
%D 2021
%P 101-111
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2021-2-101/
%R 10.5817/AM2021-2-101
%G en
%F 10_5817_AM2021_2_101
Nasehi, Mehri. On the Finsler geometry of the Heisenberg group $H_{2n+1}$ and its extension. Archivum mathematicum, Tome 57 (2021) no. 2, pp. 101-111. doi : 10.5817/AM2021-2-101. http://geodesic.mathdoc.fr/articles/10.5817/AM2021-2-101/

Cité par Sources :