Keywords: asymptotic behavior; nonoscillatory solution; half-linear differential equation; Hardy-type inequality
@article{10_5817_AM2021_1_41,
author = {Naito, Manabu},
title = {Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, {II}},
journal = {Archivum mathematicum},
pages = {41--60},
year = {2021},
volume = {57},
number = {1},
doi = {10.5817/AM2021-1-41},
mrnumber = {4260839},
zbl = {07332703},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-41/}
}
TY - JOUR AU - Naito, Manabu TI - Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, II JO - Archivum mathematicum PY - 2021 SP - 41 EP - 60 VL - 57 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-41/ DO - 10.5817/AM2021-1-41 LA - en ID - 10_5817_AM2021_1_41 ER -
%0 Journal Article %A Naito, Manabu %T Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, II %J Archivum mathematicum %D 2021 %P 41-60 %V 57 %N 1 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-41/ %R 10.5817/AM2021-1-41 %G en %F 10_5817_AM2021_1_41
Naito, Manabu. Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, II. Archivum mathematicum, Tome 57 (2021) no. 1, pp. 41-60. doi: 10.5817/AM2021-1-41
[1] Beesack, P.R.: Hardy’s inequality and its extensions. Pacific J. Math. 11 (1961), 39–61. | DOI | MR
[2] Došlý, O., Řehák, P.: Half-Linear Differential Equations. North-Holland Mathematics Studies, vol. 202, Elsevier, Amsterdam, 2005. | MR
[3] Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. second ed., Cambridge University Press, Cambridge, 1952. | MR | Zbl
[4] Hartman, P.: Ordinary Differential Equations. SIAM, Classics in Applied Mathematics, Wiley, 1964. | MR | Zbl
[5] Jaroš, J., Kusano, T.: Self-adjoint differential equations and generalized Karamata functions. Bull. T. CXXIX de Acad. Serbe Sci. et Arts, Classe Sci. Mat. Nat. Sci. Math. 29 (2004), 25–60. | MR
[6] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillation theory for second order half-linear differential equations in the framework of regular variation. Results Math. 43 (2003), 129–149. | DOI | MR
[7] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillatory half-linear differential equations and generalized Karamata functions. Nonlinear Anal. 64 (2006), 762–787. | DOI | MR
[8] Kusano, T., Manojlović, J.V.: Asymptotic behavior of solutions of half-linear differential equations and generalized Karamata functions. to appear in Georgian Math. J.
[9] Kusano, T., Manojlović, J.V.: Precise asymptotic behavior of regularly varying solutions of second order half-linear differential equations. Electron. J. Qual. Theory Differ. Equ. (2016), 24 pp., paper No. 62. | MR
[10] Manojlović, J.V.: Asymptotic analysis of regularly varying solutions of second-order half-linear differential equations. Kyoto University, RIMS Kokyuroku 2080 (2018), 4–17.
[11] Marić, V.: Regular Variation and Differential Equations. Lecture Notes in Math., vol. 1726, Springer, 2000. | MR
[12] Naito, M.: Asymptotic behavior of nonoscillatory solutions of half-linear ordinary differential equations. to appear in Arch. Math. (Basel).
[13] Naito, M.: Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, I. Opuscula Math. 41 (2021), 71–94. | DOI
[14] Řehák, P.: Asymptotic formulae for solutions of half-linear differential equations. Appl. Math. Comput. 292 (2017), 165–177. | MR
[15] Řehák, P., Taddei, V.: Solutions of half-linear differential equations in the classes gamma and pi. Differ. Integral Equ. 29 (2016), 683–714. | MR
Cité par Sources :