Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, II
Archivum mathematicum, Tome 57 (2021) no. 1, pp. 41-60 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the half-linear differential equation of the form \[ (p(t)|x^{\prime }|^{\alpha }\mathrm{sgn}\,x^{\prime })^{\prime } + q(t)|x|^{\alpha }\mathrm{sgn}\,x = 0\,, \quad t \ge t_{0} \,, \] under the assumption that $p(t)^{-1/\alpha }$ is integrable on $[t_{0}, \infty )$. It is shown that if a certain condition is satisfied, then the above equation has a pair of nonoscillatory solutions with specific asymptotic behavior as $t \rightarrow \infty $.
We consider the half-linear differential equation of the form \[ (p(t)|x^{\prime }|^{\alpha }\mathrm{sgn}\,x^{\prime })^{\prime } + q(t)|x|^{\alpha }\mathrm{sgn}\,x = 0\,, \quad t \ge t_{0} \,, \] under the assumption that $p(t)^{-1/\alpha }$ is integrable on $[t_{0}, \infty )$. It is shown that if a certain condition is satisfied, then the above equation has a pair of nonoscillatory solutions with specific asymptotic behavior as $t \rightarrow \infty $.
DOI : 10.5817/AM2021-1-41
Classification : 26D10, 34C10, 34C11
Keywords: asymptotic behavior; nonoscillatory solution; half-linear differential equation; Hardy-type inequality
@article{10_5817_AM2021_1_41,
     author = {Naito, Manabu},
     title = {Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, {II}},
     journal = {Archivum mathematicum},
     pages = {41--60},
     year = {2021},
     volume = {57},
     number = {1},
     doi = {10.5817/AM2021-1-41},
     mrnumber = {4260839},
     zbl = {07332703},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-41/}
}
TY  - JOUR
AU  - Naito, Manabu
TI  - Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, II
JO  - Archivum mathematicum
PY  - 2021
SP  - 41
EP  - 60
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-41/
DO  - 10.5817/AM2021-1-41
LA  - en
ID  - 10_5817_AM2021_1_41
ER  - 
%0 Journal Article
%A Naito, Manabu
%T Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, II
%J Archivum mathematicum
%D 2021
%P 41-60
%V 57
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-41/
%R 10.5817/AM2021-1-41
%G en
%F 10_5817_AM2021_1_41
Naito, Manabu. Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, II. Archivum mathematicum, Tome 57 (2021) no. 1, pp. 41-60. doi: 10.5817/AM2021-1-41

[1] Beesack, P.R.: Hardy’s inequality and its extensions. Pacific J. Math. 11 (1961), 39–61. | DOI | MR

[2] Došlý, O., Řehák, P.: Half-Linear Differential Equations. North-Holland Mathematics Studies, vol. 202, Elsevier, Amsterdam, 2005. | MR

[3] Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. second ed., Cambridge University Press, Cambridge, 1952. | MR | Zbl

[4] Hartman, P.: Ordinary Differential Equations. SIAM, Classics in Applied Mathematics, Wiley, 1964. | MR | Zbl

[5] Jaroš, J., Kusano, T.: Self-adjoint differential equations and generalized Karamata functions. Bull. T. CXXIX de Acad. Serbe Sci. et Arts, Classe Sci. Mat. Nat. Sci. Math. 29 (2004), 25–60. | MR

[6] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillation theory for second order half-linear differential equations in the framework of regular variation. Results Math. 43 (2003), 129–149. | DOI | MR

[7] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillatory half-linear differential equations and generalized Karamata functions. Nonlinear Anal. 64 (2006), 762–787. | DOI | MR

[8] Kusano, T., Manojlović, J.V.: Asymptotic behavior of solutions of half-linear differential equations and generalized Karamata functions. to appear in Georgian Math. J.

[9] Kusano, T., Manojlović, J.V.: Precise asymptotic behavior of regularly varying solutions of second order half-linear differential equations. Electron. J. Qual. Theory Differ. Equ. (2016), 24 pp., paper No. 62. | MR

[10] Manojlović, J.V.: Asymptotic analysis of regularly varying solutions of second-order half-linear differential equations. Kyoto University, RIMS Kokyuroku 2080 (2018), 4–17.

[11] Marić, V.: Regular Variation and Differential Equations. Lecture Notes in Math., vol. 1726, Springer, 2000. | MR

[12] Naito, M.: Asymptotic behavior of nonoscillatory solutions of half-linear ordinary differential equations. to appear in Arch. Math. (Basel).

[13] Naito, M.: Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, I. Opuscula Math. 41 (2021), 71–94. | DOI

[14] Řehák, P.: Asymptotic formulae for solutions of half-linear differential equations. Appl. Math. Comput. 292 (2017), 165–177. | MR

[15] Řehák, P., Taddei, V.: Solutions of half-linear differential equations in the classes gamma and pi. Differ. Integral Equ. 29 (2016), 683–714. | MR

Cité par Sources :