Keywords: half-linear ordinary differential equation; asymptotic form
@article{10_5817_AM2021_1_27,
author = {Luey, Sokea and Usami, Hiroyuki},
title = {Asymptotic forms of solutions of perturbed half-linear ordinary differential equations},
journal = {Archivum mathematicum},
pages = {27--39},
year = {2021},
volume = {57},
number = {1},
doi = {10.5817/AM2021-1-27},
mrnumber = {4260838},
zbl = {07332702},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-27/}
}
TY - JOUR AU - Luey, Sokea AU - Usami, Hiroyuki TI - Asymptotic forms of solutions of perturbed half-linear ordinary differential equations JO - Archivum mathematicum PY - 2021 SP - 27 EP - 39 VL - 57 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-27/ DO - 10.5817/AM2021-1-27 LA - en ID - 10_5817_AM2021_1_27 ER -
%0 Journal Article %A Luey, Sokea %A Usami, Hiroyuki %T Asymptotic forms of solutions of perturbed half-linear ordinary differential equations %J Archivum mathematicum %D 2021 %P 27-39 %V 57 %N 1 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-27/ %R 10.5817/AM2021-1-27 %G en %F 10_5817_AM2021_1_27
Luey, Sokea; Usami, Hiroyuki. Asymptotic forms of solutions of perturbed half-linear ordinary differential equations. Archivum mathematicum, Tome 57 (2021) no. 1, pp. 27-39. doi: 10.5817/AM2021-1-27
[1] Bodine, S., Lutz, D.A.: Asymptotic Integration of Differential and Difference Equations. Lecture Notes in Math., vol. 2129, Springer, 2015. | MR
[2] Coppel, W.A.: Stability and Asymptotic Behavior of Differential Equations. Heath, 1965. | MR | Zbl
[3] Došlý, O., Řehák, P.: Half-linear Differential Equations. Elsevier, 2005. | MR
[4] Hartman, P.: Ordinary Differential Equations. Birkhäuser, 1982. | MR | Zbl
[5] Mizukami, M., Naito, M., Usami, H.: Asymptotic behavior of solutions of a class of second order quasilinear ordinary differential equations. Hiroshima Math. J. 32 (2002), 51–78. | DOI | MR | Zbl
[6] Naito, Y., Tanaka, S.: Sharp conditions for the existence of sign-changing solutions to equations involving the one-dimensional p-Laplacian. Nonlinear Anal. 69 (2008), 3070–3083. | MR
Cité par Sources :