On the $2$-class group of some number fields with large degree
Archivum mathematicum, Tome 57 (2021) no. 1, pp. 13-26 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $d$ be an odd square-free integer, $m\ge 3$ any integer and $L_{m, d}:=\mathbb{Q}(\zeta _{2^m},\sqrt{d})$. In this paper, we shall determine all the fields $L_{m, d}$ having an odd class number. Furthermore, using the cyclotomic $\mathbb{Z}_2$-extensions of some number fields, we compute the rank of the $2$-class group of $L_{m, d}$ whenever the prime divisors of $d$ are congruent to $3$ or $5\pmod 8$.
Let $d$ be an odd square-free integer, $m\ge 3$ any integer and $L_{m, d}:=\mathbb{Q}(\zeta _{2^m},\sqrt{d})$. In this paper, we shall determine all the fields $L_{m, d}$ having an odd class number. Furthermore, using the cyclotomic $\mathbb{Z}_2$-extensions of some number fields, we compute the rank of the $2$-class group of $L_{m, d}$ whenever the prime divisors of $d$ are congruent to $3$ or $5\pmod 8$.
DOI : 10.5817/AM2021-1-13
Classification : 11R11, 11R23, 11R29, 11R32
Keywords: cyclotomic $\mathbb{Z}_2$-extension; $2$-rank; $2$-class group
@article{10_5817_AM2021_1_13,
     author = {Chems-Eddin, Mohamed Mahmoud and Azizi, Abdelmalek and Zekhnini, Abdelkader},
     title = {On the $2$-class group of some number fields with large degree},
     journal = {Archivum mathematicum},
     pages = {13--26},
     year = {2021},
     volume = {57},
     number = {1},
     doi = {10.5817/AM2021-1-13},
     mrnumber = {4260837},
     zbl = {07332701},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-13/}
}
TY  - JOUR
AU  - Chems-Eddin, Mohamed Mahmoud
AU  - Azizi, Abdelmalek
AU  - Zekhnini, Abdelkader
TI  - On the $2$-class group of some number fields with large degree
JO  - Archivum mathematicum
PY  - 2021
SP  - 13
EP  - 26
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-13/
DO  - 10.5817/AM2021-1-13
LA  - en
ID  - 10_5817_AM2021_1_13
ER  - 
%0 Journal Article
%A Chems-Eddin, Mohamed Mahmoud
%A Azizi, Abdelmalek
%A Zekhnini, Abdelkader
%T On the $2$-class group of some number fields with large degree
%J Archivum mathematicum
%D 2021
%P 13-26
%V 57
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-13/
%R 10.5817/AM2021-1-13
%G en
%F 10_5817_AM2021_1_13
Chems-Eddin, Mohamed Mahmoud; Azizi, Abdelmalek; Zekhnini, Abdelkader. On the $2$-class group of some number fields with large degree. Archivum mathematicum, Tome 57 (2021) no. 1, pp. 13-26. doi: 10.5817/AM2021-1-13

[1] Azizi, A., Chems-Eddin, M.M., Zekhnini, A.: On the rank of the $2$-class group of some imaginary triquadratic number fields. Rend. Circ. Mat. Palermo, II Ser. (2019), 19 pp., | DOI

[2] Azizi, A., Zekhnini, A., Taous, M.: On the strongly ambiguous classes of some biquadratic number fields. Math. Bohem. 14 (2016), 363–384. | DOI | MR

[3] Chems-Eddin, M.M., Müller, K.: $2$-class groups of cyclotomic towers of imaginary biquadratic fields and applications. Accepted for publication in Int. J. Number Theory, arXiv:2002.03602.

[4] Connor, P.E., Hurrelbrink, J.: Class number parity. Series in Pure Mathematics, World Scientific, 1988. | MR

[5] Fukuda, T.: Remarks on $\mathbb{Z}_p$-extensions of number fields. Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 264–266. | DOI | MR

[6] Gras, G.: Sur les l-classes d’idéaux dans les extensions cycliques relatives de degré premier l. Ann. Inst. Fourier (Grenoble) 23 (1973), 1–48. | DOI | MR

[7] Hilbert, D.: Über die Theorie des relativquadratischen Zahlkörpers. Math. Annal. 51 (1898), 1–127. | DOI

[8] Hubbard, D., Washington, L.C.: Iwasawa Invariants of some non-cyclotomic $\mathbb{Z}$-extensions. arXiv:1703.06550. | MR

[9] Lemmermeyer, F.: Kuroda’s class number formula. Acta Arith. 66 (1994), 245–260. | DOI | MR | Zbl

[10] Li, J., Ouyang, Y., Xu, Y., Zhang, S.: $l$-class groups of fields in Kummer towers. arXiv:1905.04966.

[11] Masley, J.M., Montgomery, H.L.: Cyclotomic fields with unique factorization. J. Reine Angew. Math. 286/287 (1976), 248–256. | MR

[12] McCall, T.M., Parry, C.J., Ranalli, R.R.: Imaginary bicyclic biquadratic fields with cyclic $2$-class group. J. Number Theory 53 (1995), 88–99. | DOI | MR

[13] Mouhib, A., Movahhedi, A.: Cyclicity of the unramified Iwasawa module. Manuscripta Math. 135 (2011), 91–106. | DOI | MR

[14] Washington, L.C.: Introduction to cyclotomic fields. Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, second ed., 1997. | MR

Cité par Sources :