Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces
Archivum mathematicum, Tome 57 (2021) no. 1, pp. 1-11.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the present paper we study naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces. We show that for homogeneous $(\alpha ,\beta )$-metric spaces, under a mild condition, the two definitions of naturally reductive homogeneous Finsler space, given in the literature, are equivalent. Then, we compute the flag curvature of naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces.
DOI : 10.5817/AM2021-1-1
Classification : 53C30, 53C60
Keywords: naturally reductive homogeneous space; invariant Riemannian metric; invariant $(\alpha, \beta )$-metric
@article{10_5817_AM2021_1_1,
     author = {Parhizkar, M. and Salimi Moghaddam, H.R.},
     title = {Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces},
     journal = {Archivum mathematicum},
     pages = {1--11},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2021},
     doi = {10.5817/AM2021-1-1},
     mrnumber = {4260836},
     zbl = {07332700},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-1/}
}
TY  - JOUR
AU  - Parhizkar, M.
AU  - Salimi Moghaddam, H.R.
TI  - Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces
JO  - Archivum mathematicum
PY  - 2021
SP  - 1
EP  - 11
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-1/
DO  - 10.5817/AM2021-1-1
LA  - en
ID  - 10_5817_AM2021_1_1
ER  - 
%0 Journal Article
%A Parhizkar, M.
%A Salimi Moghaddam, H.R.
%T Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces
%J Archivum mathematicum
%D 2021
%P 1-11
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-1/
%R 10.5817/AM2021-1-1
%G en
%F 10_5817_AM2021_1_1
Parhizkar, M.; Salimi Moghaddam, H.R. Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces. Archivum mathematicum, Tome 57 (2021) no. 1, pp. 1-11. doi : 10.5817/AM2021-1-1. http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-1/

Cité par Sources :