Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces
Archivum mathematicum, Tome 57 (2021) no. 1, pp. 1-11
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the present paper we study naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces. We show that for homogeneous $(\alpha ,\beta )$-metric spaces, under a mild condition, the two definitions of naturally reductive homogeneous Finsler space, given in the literature, are equivalent. Then, we compute the flag curvature of naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces.
In the present paper we study naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces. We show that for homogeneous $(\alpha ,\beta )$-metric spaces, under a mild condition, the two definitions of naturally reductive homogeneous Finsler space, given in the literature, are equivalent. Then, we compute the flag curvature of naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces.
DOI : 10.5817/AM2021-1-1
Classification : 53C30, 53C60
Keywords: naturally reductive homogeneous space; invariant Riemannian metric; invariant $(\alpha, \beta )$-metric
@article{10_5817_AM2021_1_1,
     author = {Parhizkar, M. and Salimi Moghaddam, H.R.},
     title = {Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces},
     journal = {Archivum mathematicum},
     pages = {1--11},
     year = {2021},
     volume = {57},
     number = {1},
     doi = {10.5817/AM2021-1-1},
     mrnumber = {4260836},
     zbl = {07332700},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-1/}
}
TY  - JOUR
AU  - Parhizkar, M.
AU  - Salimi Moghaddam, H.R.
TI  - Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces
JO  - Archivum mathematicum
PY  - 2021
SP  - 1
EP  - 11
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-1/
DO  - 10.5817/AM2021-1-1
LA  - en
ID  - 10_5817_AM2021_1_1
ER  - 
%0 Journal Article
%A Parhizkar, M.
%A Salimi Moghaddam, H.R.
%T Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces
%J Archivum mathematicum
%D 2021
%P 1-11
%V 57
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-1/
%R 10.5817/AM2021-1-1
%G en
%F 10_5817_AM2021_1_1
Parhizkar, M.; Salimi Moghaddam, H.R. Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces. Archivum mathematicum, Tome 57 (2021) no. 1, pp. 1-11. doi: 10.5817/AM2021-1-1

[1] Asanov, G.S.: Finsleroid space with angle and scalar product. Publ. Math. Debrecen 67 (2005), 209–252. | MR

[2] Asanov, G.S.: Finsleroid Finsler spaces of positive-definite and relativistic type. Rep. Math. Phys. 58 (2006), 275–300. | DOI | MR

[3] Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Springer, Berlin, 2000. | MR | Zbl

[4] Chern, S.S., Shen, Z.: Riemann-Finsler geometry. Nankai Tracts in Mathematics, vol. 6, World Scientific, 2005. | MR

[5] Deng, S., Hou, Z.: Invariant Finsler metrics on homogeneous manifolds. J. Phys. A: Math. Gen. 37 (2004), 8245–8253. | DOI | MR | Zbl

[6] Deng, S., Hou, Z.: Invariant Randers metrics on homogeneous Riemannian manifolds. J. Phys. A: Math. Gen. 37 (2004), 4353–4360. | DOI | MR | Zbl

[7] Deng, S., Hou, Z.: Naturally reductive homogeneous Finsler spaces. Manuscripta Math. 131 (2010), 215–229. | DOI | MR

[8] Kikuchi, S.: On the condition that a space with $ (\alpha ,\beta ) $-metric be locally Minkowskian. Tensor, N.S. 33 (1979), 142–246. | MR

[9] Kobayashi, S., Nomizu, K.: Foundations of differential geometry. Wiley-Interscience, New York, 1969. | MR | Zbl

[10] Latifi, D.: Homogeneous geodesics in homogeneous Finsler spaces. J. Geom. Phys. 57 (2007), 1421–1433. | DOI | MR

[11] Latifi, D.: Naturally reductive homogeneous Randers spaces. J. Geom. Phys. 60 (2010), 1968–1973. | DOI | MR

[12] Matsumoto, M.: The Berwald connection of a Finsler space with an $ (\alpha ,\beta ) $-metric. Tensor, N.S. 50 (1991), 18–21. | MR

[13] Matsumoto, M.: Theory of Finsler spaces with $(\alpha ,\beta )$-metric. Rep. Math. Phys. 31 (1992), 43–83. | DOI | MR

[14] Moghaddam, H.R. Salimi: The flag curvature of invariant $(\alpha ,\beta )-$metrics of type $\frac{(\alpha +\beta )^2}{\alpha }$. J. Phys. A: Math. Theor. 41 (2008), 6 pp., 275206. | DOI | MR

[15] Randers, G.: On an asymmetrical metric in the four-space of general relativity. On an asymmetrical metric in the four-space of general relativity 59 (1941), 195–199. | MR | Zbl

[16] Shen, Z.: Lectures on Finsler Geometry. World Scientific, 2001. | MR | Zbl

Cité par Sources :