Keywords: naturally reductive homogeneous space; invariant Riemannian metric; invariant $(\alpha, \beta )$-metric
@article{10_5817_AM2021_1_1,
author = {Parhizkar, M. and Salimi Moghaddam, H.R.},
title = {Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces},
journal = {Archivum mathematicum},
pages = {1--11},
year = {2021},
volume = {57},
number = {1},
doi = {10.5817/AM2021-1-1},
mrnumber = {4260836},
zbl = {07332700},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-1/}
}
TY - JOUR AU - Parhizkar, M. AU - Salimi Moghaddam, H.R. TI - Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces JO - Archivum mathematicum PY - 2021 SP - 1 EP - 11 VL - 57 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-1/ DO - 10.5817/AM2021-1-1 LA - en ID - 10_5817_AM2021_1_1 ER -
Parhizkar, M.; Salimi Moghaddam, H.R. Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces. Archivum mathematicum, Tome 57 (2021) no. 1, pp. 1-11. doi: 10.5817/AM2021-1-1
[1] Asanov, G.S.: Finsleroid space with angle and scalar product. Publ. Math. Debrecen 67 (2005), 209–252. | MR
[2] Asanov, G.S.: Finsleroid Finsler spaces of positive-definite and relativistic type. Rep. Math. Phys. 58 (2006), 275–300. | DOI | MR
[3] Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Springer, Berlin, 2000. | MR | Zbl
[4] Chern, S.S., Shen, Z.: Riemann-Finsler geometry. Nankai Tracts in Mathematics, vol. 6, World Scientific, 2005. | MR
[5] Deng, S., Hou, Z.: Invariant Finsler metrics on homogeneous manifolds. J. Phys. A: Math. Gen. 37 (2004), 8245–8253. | DOI | MR | Zbl
[6] Deng, S., Hou, Z.: Invariant Randers metrics on homogeneous Riemannian manifolds. J. Phys. A: Math. Gen. 37 (2004), 4353–4360. | DOI | MR | Zbl
[7] Deng, S., Hou, Z.: Naturally reductive homogeneous Finsler spaces. Manuscripta Math. 131 (2010), 215–229. | DOI | MR
[8] Kikuchi, S.: On the condition that a space with $ (\alpha ,\beta ) $-metric be locally Minkowskian. Tensor, N.S. 33 (1979), 142–246. | MR
[9] Kobayashi, S., Nomizu, K.: Foundations of differential geometry. Wiley-Interscience, New York, 1969. | MR | Zbl
[10] Latifi, D.: Homogeneous geodesics in homogeneous Finsler spaces. J. Geom. Phys. 57 (2007), 1421–1433. | DOI | MR
[11] Latifi, D.: Naturally reductive homogeneous Randers spaces. J. Geom. Phys. 60 (2010), 1968–1973. | DOI | MR
[12] Matsumoto, M.: The Berwald connection of a Finsler space with an $ (\alpha ,\beta ) $-metric. Tensor, N.S. 50 (1991), 18–21. | MR
[13] Matsumoto, M.: Theory of Finsler spaces with $(\alpha ,\beta )$-metric. Rep. Math. Phys. 31 (1992), 43–83. | DOI | MR
[14] Moghaddam, H.R. Salimi: The flag curvature of invariant $(\alpha ,\beta )-$metrics of type $\frac{(\alpha +\beta )^2}{\alpha }$. J. Phys. A: Math. Theor. 41 (2008), 6 pp., 275206. | DOI | MR
[15] Randers, G.: On an asymmetrical metric in the four-space of general relativity. On an asymmetrical metric in the four-space of general relativity 59 (1941), 195–199. | MR | Zbl
[16] Shen, Z.: Lectures on Finsler Geometry. World Scientific, 2001. | MR | Zbl
Cité par Sources :