Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces
Archivum mathematicum, Tome 57 (2021) no. 1, pp. 1-11
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In the present paper we study naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces. We show that for homogeneous $(\alpha ,\beta )$-metric spaces, under a mild condition, the two definitions of naturally reductive homogeneous Finsler space, given in the literature, are equivalent. Then, we compute the flag curvature of naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces.
DOI :
10.5817/AM2021-1-1
Classification :
53C30, 53C60
Keywords: naturally reductive homogeneous space; invariant Riemannian metric; invariant $(\alpha, \beta )$-metric
Keywords: naturally reductive homogeneous space; invariant Riemannian metric; invariant $(\alpha, \beta )$-metric
@article{10_5817_AM2021_1_1,
author = {Parhizkar, M. and Salimi Moghaddam, H.R.},
title = {Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces},
journal = {Archivum mathematicum},
pages = {1--11},
publisher = {mathdoc},
volume = {57},
number = {1},
year = {2021},
doi = {10.5817/AM2021-1-1},
mrnumber = {4260836},
zbl = {07332700},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-1/}
}
TY - JOUR AU - Parhizkar, M. AU - Salimi Moghaddam, H.R. TI - Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces JO - Archivum mathematicum PY - 2021 SP - 1 EP - 11 VL - 57 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-1/ DO - 10.5817/AM2021-1-1 LA - en ID - 10_5817_AM2021_1_1 ER -
%0 Journal Article %A Parhizkar, M. %A Salimi Moghaddam, H.R. %T Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces %J Archivum mathematicum %D 2021 %P 1-11 %V 57 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2021-1-1/ %R 10.5817/AM2021-1-1 %G en %F 10_5817_AM2021_1_1
Parhizkar, M.; Salimi Moghaddam, H.R. Naturally reductive homogeneous $(\alpha ,\beta )$-metric spaces. Archivum mathematicum, Tome 57 (2021) no. 1, pp. 1-11. doi: 10.5817/AM2021-1-1
Cité par Sources :