Keywords: Lie groupoid; Lie algebroid; topological groupoid; mapping groupoid; current groupoid; manifold of mappings; superposition operator; Nemytskii operator; pushforward; submersion; immersion; embedding; local diffeomorphism; \mathbbT1-cmd 1étale map; proper map; perfect map; orbifold groupoid; transitivity; local transitivity; local triviality; Stacey-Roberts Lemma
@article{10_5817_AM2020_5_307,
author = {Amiri, Habib and Gl\"ockner, Helge and Schmeding, Alexander},
title = {Lie groupoids of mappings taking values in a {Lie} groupoid},
journal = {Archivum mathematicum},
pages = {307--356},
year = {2020},
volume = {56},
number = {5},
doi = {10.5817/AM2020-5-307},
mrnumber = {4188745},
zbl = {07285968},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-5-307/}
}
TY - JOUR AU - Amiri, Habib AU - Glöckner, Helge AU - Schmeding, Alexander TI - Lie groupoids of mappings taking values in a Lie groupoid JO - Archivum mathematicum PY - 2020 SP - 307 EP - 356 VL - 56 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-5-307/ DO - 10.5817/AM2020-5-307 LA - en ID - 10_5817_AM2020_5_307 ER -
%0 Journal Article %A Amiri, Habib %A Glöckner, Helge %A Schmeding, Alexander %T Lie groupoids of mappings taking values in a Lie groupoid %J Archivum mathematicum %D 2020 %P 307-356 %V 56 %N 5 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-5-307/ %R 10.5817/AM2020-5-307 %G en %F 10_5817_AM2020_5_307
Amiri, Habib; Glöckner, Helge; Schmeding, Alexander. Lie groupoids of mappings taking values in a Lie groupoid. Archivum mathematicum, Tome 56 (2020) no. 5, pp. 307-356. doi: 10.5817/AM2020-5-307
[1] Alzaareer, H., Schmeding, A.: Differentiable mappings on products with different degrees of differentiability in the two factors. Expo. Math. 33 (2015), no. 2, 184–222. MR 3342623 DOI: | DOI | MR
[2] Amiri, H.: A group of continuous self-maps on a topological groupoid. Semigroup Forum (2017), 1–12. DOI: | DOI | MR
[3] Amiri, H., Schmeding, A.: Linking Lie groupoid representations and representations of infinite-dimensional Lie groups. 2018. | MR
[4] Amiri, H., Schmeding, A.: A differentiable monoid of smooth maps on Lie groupoids. J. Lie Theory 29 (4) (2019), 1167–1192. | MR
[5] Bastiani, A.: Applications différentiables et variétés différentiables de dimension infinie. J. Analyse Math. 13 (1964), 1–114. MR 0177277 | DOI | MR
[6] Beltiţă, D., Goliński, T., Jakimowicz, G., Pelletier, F.: Banach-Lie groupoids and generalized inversion. J. Funct. Anal. 276 (5) (2019), 1528–1574. | DOI | MR
[7] Bertram, W., Glöckner, H., Neeb, K.-H.: Differential calculus over general base fields and rings. Expo. Math. 22 (2004), no. 3, 213–282. MR 2069671 (2005e:26042) DOI: | DOI | MR | Zbl
[8] Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486 DOI: | DOI | MR
[9] Chen, Weimin: On a notion of maps between orbifolds. I. Function spaces. Commun. Contemp. Math. 8 (2006), no. 5, 569–620. MR 2263948 DOI: | DOI | MR
[10] Coufal, V., Pronk, D., Rovi, C., Scull, L., Thatcher, C.: Orbispaces and their mapping spaces via groupoids: a categorical approach. Women in topology: collaborations in homotopy theory, Contemp. Math., vol. 641, Amer. Math. Soc., Providence, RI, 2015, pp. 135–166. MR 3380073 DOI: | DOI | MR
[11] Crainic, M., Fernandes, R.L.: Integrability of Lie brackets. Ann. of Math. (2) 157 (2003), no. 2, 575–620. MR 1973056 DOI: | DOI | MR
[12] Dahmen, R., Glöckner, H., Schmeding, A.: Complexifications of infinite-dimensional manifolds and new constructions of infinite-dimensional Lie groups. 2016.
[13] Eells, J.Jr.: A setting for global analysis. Bull. Amer. Math. Soc. 72 (1966), 751–807. MR 0203742 DOI: | DOI | MR
[14] Engelking, R.: General Topology. Sigma Series in Pure Mathematics, vol. 6, Heldermann, Berlin, 1989. | MR | Zbl
[15] Glöckner, H.: Infinite-dimensional Lie groups without completeness restrictions. Geometry and Analysis on Lie Groups (Strasburger, A., Hilgert, J., Neeb, K.-H., Wojtyński, W., eds.), Banach Center Publication, vol. 55, Warsaw, 2002, pp. 43–59. | MR
[16] Glöckner, H.: Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups. J. Funct. Anal. 194 (2002), no. 2, 347–409. MR 1934608 DOI: | DOI | MR
[17] Glöckner, H.: Regularity properties of infinite-dimensional Lie groups, and semiregularity. 2015.
[18] Glöckner, H.: Fundamentals of submersions and immersions between infinite-dimensional manifolds. 2016.
[19] Glöckner, H., Neeb, K.-H.: Infinite-dimensional Lie groups. book in preparation.
[20] Glöckner, H., Neeb, K.-H.: Diffeomorphism groups of compact convex sets. Indag. Math. (N.S.) 28 (2017), no. 4, 760–783. MR 3679741 DOI: | DOI | MR
[21] Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 65–222. MR 656198 DOI: | DOI | MR | Zbl
[22] Hjelle, E.O., Schmeding, A.: Strong topologies for spaces of smooth maps with infinite-dimensional target. Expo. Math. 35 (2017), no. 1, 13–53. MR 3626202 DOI: | DOI | MR
[23] Kac, V.G.: Infinite-dimensional Lie algebras. third ed., Cambridge University Press, Cambridge, 1990. MR 1104219 DOI: | DOI | MR
[24] Keller, H.H.: Differential calculus in locally convex spaces. Lecture Notes in Math., Vol. 417, Springer-Verlag, Berlin-New York, 1974. MR 0440592 (55 #13466) | MR | Zbl
[25] Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs 53, Amer. Math. Soc., Providence R.I., 1997. | MR | Zbl
[26] Lang, S.: Fundamentals of Differential Geometry. Graduate texts in mathematics 191, Springer, New York, $^2$2001. | MR
[27] Lerman, E.: Orbifolds as stacks?. Enseign. Math. (2) 56 (2010), no. 3-4, 315–363. MR 2778793 DOI: | DOI | MR
[29] Meinrencken, E.: Lie Groupoids and Lie algebroids. Lecture notes Fall 2017.
[30] Meyer, R., Zhu, Ch.: Groupoids in categories with pretopology. Theory Appl. Categ. 30 (2015), Paper No. 55, 1906–1998. MR 3438234 | MR
[31] Michor, P.W.: Manifolds of Differentiable Mappings. Shiva Mathematics Series, vol. 3, Shiva Publishing Ltd., Nantwich, 1980. MR MR583436 (83g:58009) | MR | Zbl
[32] Milnor, J.: Remarks on infinite-dimensional Lie groups. Relativity, Groups and Topology, II (Les Houches, 1983), North-Holland, Amsterdam, 1984, pp. 1007–1057. MR MR830252 (87g:22024) | MR | Zbl
[33] Moerdijk, I., Mrčun, J.: Introduction to foliations and Lie groupoids. Cambridge Studies in Advanced Mathematics, vol. 91, Cambridge University Press, Cambridge, 2003. MR 2012261 DOI: | DOI | MR
[34] Moerdijk, I., Pronk, D.A.: Orbifolds, sheaves and groupoids. $K$-Theory 12 (1997), no. 1, 3–21. MR 1466622 DOI: | DOI | MR
[35] Neeb, K.-H.: Towards a Lie theory of locally convex groups. Japanese J. Math. 1 (2006), no. 2, 291–468. MR MR2261066 | DOI | MR | Zbl
[36] Neeb, K.-H., Wagemann, F.: Lie group structures on groups of smooth and holomorphic maps on non-compact manifolds. Geom. Dedicata 134 (2008), 17–60. MR 2399649 DOI: | DOI | MR | Zbl
[37] Palais, R.S.: Foundations of global non-linear analysis. W.A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0248880 | MR
[38] Palais, R.S.: When proper maps are closed. Proc. Amer. Math. Soc. 24 (1970), 835–836. MR 0254818 DOI: | DOI | MR
[39] Pohl, A.D.: The category of reduced orbifolds in local charts. J. Math. Soc. Japan 69 (2017), no. 2, 755–800. MR 3638284 DOI: | DOI | MR
[40] Pressley, A., Segal, G.: Loop groups. Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986, Oxford Science Publications. MR 900587 | MR
[41] Roberts, D.M., Schmeding, A.: Extending Whitney’s extension theorem: nonlinear function spaces. to appear in Annales de l'Institut Fourier, 2018.
[42] Roberts, D.M., Vozzo, R.F.: Smooth loop stacks of differentiable stacks and gerbes. Cah. Topol. Géom. Différ. Catég. 59 (2018), no. 2, 95–141. MR 3727316 | MR
[43] Roberts, D.M., Vozzo, R.F.: The smooth Hom-stack of an orbifold. 2016 MATRIX annals, MATRIX Book Ser., vol. 1, Springer, Cham, 2018, pp. 43–47. MR 3792515 | MR
[44] Schmeding, A.: The diffeomorphism group of a non-compact orbifold. Dissertationes Math. (Rozprawy Mat.) 507 (2015), 179. MR 3328452 DOI: | DOI
[45] Schmeding, A., Wockel, Ch.: The Lie group of bisections of a Lie groupoid. Ann. Global Anal. Geom. 48 (2015), no. 1, 87–123. MR 3351079 DOI: | DOI | MR
[46] Schmeding, A., Wockel, Ch.: (Re)constructing Lie groupoids from their bisections and applications to prequantisation. Differential Geom. Appl. 49 (2016), 227–276. MR 3573833 DOI: | DOI | MR
[47] Weinmann, Th.O.: Orbifolds in the framework of Lie groupoids. Ph.D. thesis, ETH Zürich, 2007. DOI: | DOI
[48] Wittmann, J.: The Banach manifold Ck(M,N). Differential Geom. Appl. 63 2) (2019), 166–185. | DOI | MR
Cité par Sources :