Keywords: Arnold conjecture; fixed points; Hamiltonian symplectomorphisms
@article{10_5817_AM2020_5_277,
author = {Golovko, Roman},
title = {On variants of {Arnold} conjecture},
journal = {Archivum mathematicum},
pages = {277--286},
year = {2020},
volume = {56},
number = {5},
doi = {10.5817/AM2020-5-277},
mrnumber = {4188742},
zbl = {07285965},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-5-277/}
}
Golovko, Roman. On variants of Arnold conjecture. Archivum mathematicum, Tome 56 (2020) no. 5, pp. 277-286. doi: 10.5817/AM2020-5-277
[1] Abbondandolo, A.: Morse theory for Hamiltonian systems. Chapman $\&$ Hall/CRC, Res. Notes Math., Boca Raton FL, 2001. | MR
[2] Arnold, V.I.: Mathematical Methods of Classical Mechanics. Grad. Texts in Math., vol. 60, Springer-Verlag, New York, 1989. | MR
[3] Barraud, J.-F.: A Floer fundamental group. Ann. Sci. École Norm. Sup. (4) 51 (3) (2018), 773–809. | DOI | MR
[4] Buhovsky, L., Humilière, V., Seyfaddini, S.: An Arnold-type principle for non-smooth objects. preprint 2019, available at arXiv:1909.07081.
[5] Buhovsky, L., Humilière, V., Seyfaddini, S.: A $C^0$ counterexample to the Arnold conjecture. Invent. Math. 213 (2018), 759–809. | DOI | MR
[6] Conley, C., Zehnder, E.: The Birkhoff–Lewis fixed point theorem and a conjecture of V.I. Arnold. Invent. Math. 73 (1983), 33–49. | DOI | MR
[7] Damian, M.: On the stable Morse number of a closed manifold. Bull. London Math. Soc. 34 (2002), 420–430. | DOI | MR
[8] Dimitroglou Rizell, G., Golovko, R.: The number of Hamiltonian fixed points on symplectically aspherical manifolds. Proceedings of the Geometry-Topology Conference 2016, Gökova Geometry-Topology Conference (GGT), Gökova, 2017, pp. 138–150. | MR
[9] Eliashberg, Y.: Estimates on the number of fixed points of area preserving transformations. Syktyvkar University, preprint 1979.
[10] Filippenko, B., Wehrheim, K.: A polyfold proof of the Arnold conjecture. preprint 2018, available at arXiv:1810.06180. | MR
[11] Fish, J., Hofer, H.: Lectures on Polyfolds and Symplectic Field Theory. preprint 2018, available at arXiv:1808.07147. | MR
[12] Floer, A.: A relative Morse index for the symplectic action. Comm. Pure Appl. Math. 41 (1988), 393–407. | DOI | MR
[13] Floer, A.: Morse theory for Lagrangian intersections. J. Differential Geom. 28 (1988), 513–547. | DOI | MR
[14] Floer, A.: The unregularized gradient flow of the symplectic action. Comm. Pure Appl. Math. 41 (1988), 775–813. | DOI | MR
[15] Floer, A.: Symplectic fixed points and holomorphic spheres. Comm. Math. Phys. 120 (1989), 575–611. | DOI | MR
[16] Floer, A.: Witten’s complex and infinite dimensional Morse theory. Differential Geom. 30 (1989), 207–221. | DOI | MR
[17] Franks, J.: Rotation vectors and fixed points of area preserving surface diffeomorphisms. Trans. Amer. Math. Soc. 348 (7) (1996), 2637–2662. | DOI | MR
[18] Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian intersection Floer theory: anomaly and obstruction. Part I. AMS/IP Studies in Advanced Mathematics, American Mathematical Society, Providence, RI; Internationl Press, Somerville, MA, 2009. | MR
[19] Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian intersection Floer theory: anomaly and obstruction. Part II. AMS/IP Studies in Advanced Mathematics, vol. 46, American Mathematical Society, Providence, RI; Internationl Press, Somerville, MA, 2009. | MR
[20] Fukaya, K., Ono, K.: Arnold conjecture and Gromov-Witten invariant. Topology 38 (5) (1999), 933–1048. | DOI | MR
[21] Fukaya, K., Ono, K.: Arnold conjecture and Gromov-Witten invariant for general symplectic manifolds. The Arnoldfest. Proceedings of a conference in honour of V. I. Arnold for his 60th birthday, Toronto, Canada, June 15-21, 1997 (al., E. Bierstone (ed.) et, ed.), vol. 24, 1999. | MR
[22] Gompf, R.E.: A new construction of symplectic manifolds. Ann. of Math. 2 (1995), 527–595. | DOI | MR
[23] Granja, G., Karshon, Y., Pabiniak, M., Sandon, S.: Givental’s non-linear Maslov index on lens spaces. preprint 2017, available at arXiv:1704.05827.
[24] Gromov, M.: Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82 (2) (1985), 307–347. | DOI | MR
[25] Hofer, H., Wysocki, K., Zehnder, E.: Polyfold and Fredholm Theory. preprint 2017, available at arXiv:1707.08941v1.
[26] Hofer, H., Zehnder, E.: Symplectic invariants and Hamiltonian dynamics. Birkhäuser Verlag, Basel, xiv+341. | MR
[27] Le Calvez, P.: Periodic orbits of Hamiltonian homeomorphisms of surfaces. Duke Math. J. 133 (1) (2006), 125–184. | DOI | MR
[28] Liu, G., Tian, G.: Floer homology and Arnold conjecture. J. Differential Geom. 49 (1) (1998), 1–74. | DOI | MR
[29] Matsumoto, S.: Arnold conjecture for surface homeomorphisms. Proceedings of the French-Japanese Conference Hyperspace Topologies and Applications, (La Bussiere, 1997), vol. 104, 2000, pp. 191–214. | MR
[30] Ono, K., Pajitnov, A.: On the fixed points of a Hamiltonian diffeomorphism in presence of fundamental group. Essays in Mathematics and its Applications: In Honor of Vladimir Arnold, Springer, 2016, pp. 199–229. | MR
[31] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. preprint 2002, available at arXiv:0211159. | MR | Zbl
[32] Piunikhin, S., Salamon, D., Schwarz, M.: Symplectic Floer-Donaldson theory and quantum cohomology. Contact and symplectic geometry (Cambridge, 1994), Publ. Newton Inst., Cambridge Univ. Press, 1996. | MR
[33] Ruan, Y.: Virtual neighborhoods and pseudo-holomorphic curves. Proceedings of 6th Gokova Geometry-Topology Conference, vol. 23, Gokova, 1999. | MR
[34] Rudyak, Yu.B., Oprea, J.: On the Lusternik-Schnirelmann category of symplectic manifolds and the Arnold conjecture. Math. Z. 230 (4) (1999), 673–678. | DOI | MR
[35] Salamon, D.: Lectures on Floer homology. Symplectic Topology, I.A.S./Park City Math. Series. Am. Math. Soc., Providence.
[36] Salamon, D.A., Zehnder, E.: Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Comm. Pure Appl. Math. 45 (1992), 1303–1360. | DOI | MR
[37] Sandon, S.: On iterated translated points for contactomorphisms of $\mathbb{R}^{2n+1}$ and $\mathbb{R}^{2n} \times S^1$. Internat. J. Math. 23 (2) (2012), 14 pp. | MR
[38] Sandon, S.: A Morse estimate for translated points of contactomorphisms of spheres and projective spaces. Geom. Dedicata 165 (2013), 95–110. | DOI | MR
[39] Schwarz, M.: Morse homology. Progress in Math., vol. 111, Birkhäuser, 1993. | MR
[40] Smale, S.: On the structure of manifolds. Amer. J. Math. 84 (1962), 387–399. | DOI | MR
[41] Tervil, B.: Translated points for prequantization spaces over monotone toric manifolds. preprint 2018, available at arXiv:1811.09984.
Cité par Sources :