Keywords: Finsler space; weakly symmetric space; g.o. space; homogeneous geodesic; geodesic graph
@article{10_5817_AM2020_5_265,
author = {Du\v{s}ek, Zden\v{e}k},
title = {Structure of geodesics in weakly symmetric {Finsler} metrics on {H-type} groups},
journal = {Archivum mathematicum},
pages = {265--275},
year = {2020},
volume = {56},
number = {5},
doi = {10.5817/AM2020-5-265},
mrnumber = {4188741},
zbl = {07285964},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-5-265/}
}
TY - JOUR AU - Dušek, Zdeněk TI - Structure of geodesics in weakly symmetric Finsler metrics on H-type groups JO - Archivum mathematicum PY - 2020 SP - 265 EP - 275 VL - 56 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-5-265/ DO - 10.5817/AM2020-5-265 LA - en ID - 10_5817_AM2020_5_265 ER -
Dušek, Zdeněk. Structure of geodesics in weakly symmetric Finsler metrics on H-type groups. Archivum mathematicum, Tome 56 (2020) no. 5, pp. 265-275. doi: 10.5817/AM2020-5-265
[1] Alekseevsky, D., Arvanitoyeorgos, A.: Riemannian flag manifolds with homogeneous geodesics. Trans. Amer. Math. Soc. 359 (2007), 3769–3789. | DOI | MR | Zbl
[2] Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Springer Science+Business Media, New York, 2000. | MR | Zbl
[3] Berndt, J., Kowalski, O., Vanhecke, L.: Geodesics in weakly symmetric spaces. Ann. Glob. Anal. Geom. 15 (1997), 153–156. | DOI | MR
[4] Berndt, J., Tricerri, F., Vanhecke, L.: Generalized Heisenberg groups and Damek-Ricci harmonic spaces. Lecture Notes in Math., vol. 1598, Springer-Verlag, Berlin-Heidelberg-New York, 1995. | MR
[5] Deng, S.: Homogeneous Finsler Spaces. Springer Science+Business Media, New York, 2012. | MR
[6] Dušek, Z.: Explicit geodesic graphs on some H-type groups. Rend. Circ. Mat. Palermo, Serie II, Suppl. 69 (2002), 77–88. | MR
[7] Dušek, Z.: Structure of geodesics in the flag manifold ${\rm SO}(7)/{\rm U}(3)$. Differential Geometry and its Applications, Proc. 10th Int. Conf. (Kowalski, O., Krupka, D., Krupková, O., Slovák, J., eds.), World Scientific, 2008, pp. 89–98. | MR
[8] Dušek, Z.: Homogeneous geodesics and g.o. manifolds. Note Mat. 38 (2018), 1–15. | MR
[9] Dušek, Z.: Geodesic graphs in Randers g.o. spaces. Comment. Math. Univ. Carolin. 61 (2) (2020), 195–211. | MR
[10] Dušek, Z., Kowalski, O.: Geodesic graphs on the $13$-dimensional group of Heisenberg type. Math. Nachr. 254–255 (2003), 87–96. | DOI | MR
[11] Gordon, C.S., Nikonorov, Yu.G.: Geodesic orbit Riemannian structures on $\mathbb{R}^n$. J. Geom. Phys. 134 (2018), 235–243. | DOI | MR
[12] Kowalski, O., Nikčević, S.: On geodesic graphs of Riemannian g.o. spaces. Arch. Math. 73 (1999), 223–234, Appendix: Arch. Math. 79 (2002), 158–160. | DOI | MR
[13] Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. Un. Math. Ital. B(7) 5 (1991), 189–246. | MR | Zbl
[14] Latifi, D.: Homogeneous geodesics in homogeneous Finsler spaces. J. Geom. Phys. 57 (2007), 1421–1433. | DOI | MR
[15] Lauret, J.: Modified H-type groups and symmetric-like Riemannian spaces. Differential Geom. Appl. 10 (1999), 121–143. | DOI | MR
[17] Riehm, C.: Explicit spin representations and Lie algebras of Heisenberg type. J. London Math. Soc. (2) 32 (1985), 265–271. | MR
[18] Szenthe, J.: Sur la connection naturelle à torsion nulle. Acta Sci. Math. (Szeged) 38 (1976), 383–398. | MR
[19] Yan, Z., Deng, S.: Finsler spaces whose geodesics are orbits. Differential Geom. Appl. 36 (2014), 1–23. | DOI | MR
Cité par Sources :