Repdigits in generalized Pell sequences
Archivum mathematicum, Tome 56 (2020) no. 4, pp. 249-262.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For an integer $k\ge 2$, let $({n})_n$ be the $k-$generalized Pell sequence which starts with $0,\ldots ,0,1$ ($k$ terms) and each term afterwards is given by the linear recurrence ${n} = 2{n-1}+{n-2}+\cdots +{n-k}$. In this paper, we find all $k$-generalized Pell numbers with only one distinct digit (the so-called repdigits). Some interesting estimations involving generalized Pell numbers, that we believe are of independent interest, are also deduced. This paper continues a previous work that searched for repdigits in the usual Pell sequence $(P_n^{(2)})_n$.
DOI : 10.5817/AM2020-4-249
Classification : 11B39, 11J86
Keywords: generalized Pell numbers; repdigits; linear forms in logarithms; reduction method
@article{10_5817_AM2020_4_249,
     author = {Bravo, Jhon J. and Herrera, Jose L.},
     title = {Repdigits in generalized {Pell} sequences},
     journal = {Archivum mathematicum},
     pages = {249--262},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2020},
     doi = {10.5817/AM2020-4-249},
     mrnumber = {4173077},
     zbl = {07285963},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-249/}
}
TY  - JOUR
AU  - Bravo, Jhon J.
AU  - Herrera, Jose L.
TI  - Repdigits in generalized Pell sequences
JO  - Archivum mathematicum
PY  - 2020
SP  - 249
EP  - 262
VL  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-249/
DO  - 10.5817/AM2020-4-249
LA  - en
ID  - 10_5817_AM2020_4_249
ER  - 
%0 Journal Article
%A Bravo, Jhon J.
%A Herrera, Jose L.
%T Repdigits in generalized Pell sequences
%J Archivum mathematicum
%D 2020
%P 249-262
%V 56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-249/
%R 10.5817/AM2020-4-249
%G en
%F 10_5817_AM2020_4_249
Bravo, Jhon J.; Herrera, Jose L. Repdigits in generalized Pell sequences. Archivum mathematicum, Tome 56 (2020) no. 4, pp. 249-262. doi : 10.5817/AM2020-4-249. http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-249/

Cité par Sources :