Keywords: generalized Pell numbers; repdigits; linear forms in logarithms; reduction method
@article{10_5817_AM2020_4_249,
author = {Bravo, Jhon J. and Herrera, Jose L.},
title = {Repdigits in generalized {Pell} sequences},
journal = {Archivum mathematicum},
pages = {249--262},
year = {2020},
volume = {56},
number = {4},
doi = {10.5817/AM2020-4-249},
mrnumber = {4173077},
zbl = {07285963},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-249/}
}
Bravo, Jhon J.; Herrera, Jose L. Repdigits in generalized Pell sequences. Archivum mathematicum, Tome 56 (2020) no. 4, pp. 249-262. doi: 10.5817/AM2020-4-249
[1] Baker, A., Davenport, H.: The equations $3x^2-2=y^2$ and $8x^2-7=z^2$. Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. | MR
[2] Bravo, J.J., Gómez, C.A., Luca, F.: Powers of two as sums of two $k-$Fibonacci numbers. Miskolc Math. Notes 17 (1) (2016), 85–100. | DOI | MR
[3] Bravo, J.J., Herrera, J.L., Luca, F.: On a generalization of the Pell sequence. doi:10.21136/MB.2020.0098-19 on line in Math. Bohem. | DOI
[4] Bravo, J.J., Luca, F.: On a conjecture about repdigits in $k-$generalized Fibonacci sequences. Publ. Math. Debrecen 82 (3–4) (2013), 623–639. | DOI | MR
[5] Bravo, J.J., Luca, F.: Repdigits in $k$-Lucas sequences. Proc. Indian Acad. Sci. Math. Sci. 124 (2) (2014), 141–154. | DOI | MR
[6] Dujella, A., Pethö, A.: A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49 (195) (1998), 291–306. | MR | Zbl
[7] Faye, B., Luca, F.: Pell and Pell-Lucas numbers with only one distinct digits. Ann. of Math. 45 (2015), 55–60. | MR
[8] Kiliç, E.: The Binet formula, sums and representations of generalized Fibonacci $p$-numbers. European J. Combin. 29 (2008), 701–711. | DOI | MR
[9] Kiliç, E.: On the usual Fibonacci and generalized order$-k$ Pell numbers. Ars Combin 109 (2013), 391–403. | MR
[10] Kiliç, E., Taşci, D.: The generalized Binet formula, representation and sums of the generalized order$-k$ Pell numbers. Taiwanese J. Math. 10 (6) (2006), 1661–1670. | DOI | MR
[11] Koshy, T.: Fibonacci and Lucas Numbers with Applications. Pure and Applied Mathematics, Wiley-Interscience Publications, New York, 2001. | MR
[12] Luca, F.: Fibonacci and Lucas numbers with only one distinct digit. Port. Math. 57 (2) (2000), 243–254. | MR | Zbl
[13] Marques, D.: On $k$-generalized Fibonacci numbers with only one distinct digit. Util. Math. 98 (2015), 23–31. | MR
[14] Matveev, E.M.: An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II. Izv. Ross. Akad. Nauk Ser. Mat. 64 (6) (2000), 125–180, translation in Izv. Math. 64 (2000), no. 6, 1217–1269. | MR
[15] Normenyo, B., Luca, F., Togbé, A.: Repdigits as sums of three Pell numbers. Period. Math. Hungarica 77 (2) (2018), 318–328. | DOI | MR
[16] Normenyo, B., Luca, F., Togbé, A.: Repdigits as sums of four Pell numbers. Bol. Soc. Mat. Mex. (3) 25 (2) (2019), 249–266. | DOI | MR
Cité par Sources :