Repdigits in generalized Pell sequences
Archivum mathematicum, Tome 56 (2020) no. 4, pp. 249-262 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For an integer $k\ge 2$, let $({n})_n$ be the $k-$generalized Pell sequence which starts with $0,\ldots ,0,1$ ($k$ terms) and each term afterwards is given by the linear recurrence ${n} = 2{n-1}+{n-2}+\cdots +{n-k}$. In this paper, we find all $k$-generalized Pell numbers with only one distinct digit (the so-called repdigits). Some interesting estimations involving generalized Pell numbers, that we believe are of independent interest, are also deduced. This paper continues a previous work that searched for repdigits in the usual Pell sequence $(P_n^{(2)})_n$.
For an integer $k\ge 2$, let $({n})_n$ be the $k-$generalized Pell sequence which starts with $0,\ldots ,0,1$ ($k$ terms) and each term afterwards is given by the linear recurrence ${n} = 2{n-1}+{n-2}+\cdots +{n-k}$. In this paper, we find all $k$-generalized Pell numbers with only one distinct digit (the so-called repdigits). Some interesting estimations involving generalized Pell numbers, that we believe are of independent interest, are also deduced. This paper continues a previous work that searched for repdigits in the usual Pell sequence $(P_n^{(2)})_n$.
DOI : 10.5817/AM2020-4-249
Classification : 11B39, 11J86
Keywords: generalized Pell numbers; repdigits; linear forms in logarithms; reduction method
@article{10_5817_AM2020_4_249,
     author = {Bravo, Jhon J. and Herrera, Jose L.},
     title = {Repdigits in generalized {Pell} sequences},
     journal = {Archivum mathematicum},
     pages = {249--262},
     year = {2020},
     volume = {56},
     number = {4},
     doi = {10.5817/AM2020-4-249},
     mrnumber = {4173077},
     zbl = {07285963},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-249/}
}
TY  - JOUR
AU  - Bravo, Jhon J.
AU  - Herrera, Jose L.
TI  - Repdigits in generalized Pell sequences
JO  - Archivum mathematicum
PY  - 2020
SP  - 249
EP  - 262
VL  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-249/
DO  - 10.5817/AM2020-4-249
LA  - en
ID  - 10_5817_AM2020_4_249
ER  - 
%0 Journal Article
%A Bravo, Jhon J.
%A Herrera, Jose L.
%T Repdigits in generalized Pell sequences
%J Archivum mathematicum
%D 2020
%P 249-262
%V 56
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-249/
%R 10.5817/AM2020-4-249
%G en
%F 10_5817_AM2020_4_249
Bravo, Jhon J.; Herrera, Jose L. Repdigits in generalized Pell sequences. Archivum mathematicum, Tome 56 (2020) no. 4, pp. 249-262. doi: 10.5817/AM2020-4-249

[1] Baker, A., Davenport, H.: The equations $3x^2-2=y^2$ and $8x^2-7=z^2$. Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. | MR

[2] Bravo, J.J., Gómez, C.A., Luca, F.: Powers of two as sums of two $k-$Fibonacci numbers. Miskolc Math. Notes 17 (1) (2016), 85–100. | DOI | MR

[3] Bravo, J.J., Herrera, J.L., Luca, F.: On a generalization of the Pell sequence. doi:10.21136/MB.2020.0098-19 on line in Math. Bohem. | DOI

[4] Bravo, J.J., Luca, F.: On a conjecture about repdigits in $k-$generalized Fibonacci sequences. Publ. Math. Debrecen 82 (3–4) (2013), 623–639. | DOI | MR

[5] Bravo, J.J., Luca, F.: Repdigits in $k$-Lucas sequences. Proc. Indian Acad. Sci. Math. Sci. 124 (2) (2014), 141–154. | DOI | MR

[6] Dujella, A., Pethö, A.: A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49 (195) (1998), 291–306. | MR | Zbl

[7] Faye, B., Luca, F.: Pell and Pell-Lucas numbers with only one distinct digits. Ann. of Math. 45 (2015), 55–60. | MR

[8] Kiliç, E.: The Binet formula, sums and representations of generalized Fibonacci $p$-numbers. European J. Combin. 29 (2008), 701–711. | DOI | MR

[9] Kiliç, E.: On the usual Fibonacci and generalized order$-k$ Pell numbers. Ars Combin 109 (2013), 391–403. | MR

[10] Kiliç, E., Taşci, D.: The generalized Binet formula, representation and sums of the generalized order$-k$ Pell numbers. Taiwanese J. Math. 10 (6) (2006), 1661–1670. | DOI | MR

[11] Koshy, T.: Fibonacci and Lucas Numbers with Applications. Pure and Applied Mathematics, Wiley-Interscience Publications, New York, 2001. | MR

[12] Luca, F.: Fibonacci and Lucas numbers with only one distinct digit. Port. Math. 57 (2) (2000), 243–254. | MR | Zbl

[13] Marques, D.: On $k$-generalized Fibonacci numbers with only one distinct digit. Util. Math. 98 (2015), 23–31. | MR

[14] Matveev, E.M.: An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II. Izv. Ross. Akad. Nauk Ser. Mat. 64 (6) (2000), 125–180, translation in Izv. Math. 64 (2000), no. 6, 1217–1269. | MR

[15] Normenyo, B., Luca, F., Togbé, A.: Repdigits as sums of three Pell numbers. Period. Math. Hungarica 77 (2) (2018), 318–328. | DOI | MR

[16] Normenyo, B., Luca, F., Togbé, A.: Repdigits as sums of four Pell numbers. Bol. Soc. Mat. Mex. (3) 25 (2) (2019), 249–266. | DOI | MR

Cité par Sources :