On Riemann-Poisson Lie groups
Archivum mathematicum, Tome 56 (2020) no. 4, pp. 225-247
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A Riemann-Poisson Lie group is a Lie group endowed with a left invariant Riemannian metric and a left invariant Poisson tensor which are compatible in the sense introduced in [4]. We study these Lie groups and we give a characterization of their Lie algebras. We give also a way of building these Lie algebras and we give the list of such Lie algebras up to dimension 5.
A Riemann-Poisson Lie group is a Lie group endowed with a left invariant Riemannian metric and a left invariant Poisson tensor which are compatible in the sense introduced in [4]. We study these Lie groups and we give a characterization of their Lie algebras. We give also a way of building these Lie algebras and we give the list of such Lie algebras up to dimension 5.
DOI :
10.5817/AM2020-4-225
Classification :
22E05, 53A15, 53D17
Keywords: Lie group; Poisson manifolds; Riemannian metric
Keywords: Lie group; Poisson manifolds; Riemannian metric
@article{10_5817_AM2020_4_225,
author = {Alioune, Brahim and Boucetta, Mohamed and Sid{\textquoteright}Ahmed Lessiad, Ahmed},
title = {On {Riemann-Poisson} {Lie} groups},
journal = {Archivum mathematicum},
pages = {225--247},
year = {2020},
volume = {56},
number = {4},
doi = {10.5817/AM2020-4-225},
mrnumber = {4173076},
zbl = {07285962},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-225/}
}
TY - JOUR AU - Alioune, Brahim AU - Boucetta, Mohamed AU - Sid’Ahmed Lessiad, Ahmed TI - On Riemann-Poisson Lie groups JO - Archivum mathematicum PY - 2020 SP - 225 EP - 247 VL - 56 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-225/ DO - 10.5817/AM2020-4-225 LA - en ID - 10_5817_AM2020_4_225 ER -
Alioune, Brahim; Boucetta, Mohamed; Sid’Ahmed Lessiad, Ahmed. On Riemann-Poisson Lie groups. Archivum mathematicum, Tome 56 (2020) no. 4, pp. 225-247. doi: 10.5817/AM2020-4-225
Cité par Sources :