On Riemann-Poisson Lie groups
Archivum mathematicum, Tome 56 (2020) no. 4, pp. 225-247 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A Riemann-Poisson Lie group is a Lie group endowed with a left invariant Riemannian metric and a left invariant Poisson tensor which are compatible in the sense introduced in [4]. We study these Lie groups and we give a characterization of their Lie algebras. We give also a way of building these Lie algebras and we give the list of such Lie algebras up to dimension 5.
A Riemann-Poisson Lie group is a Lie group endowed with a left invariant Riemannian metric and a left invariant Poisson tensor which are compatible in the sense introduced in [4]. We study these Lie groups and we give a characterization of their Lie algebras. We give also a way of building these Lie algebras and we give the list of such Lie algebras up to dimension 5.
DOI : 10.5817/AM2020-4-225
Classification : 22E05, 53A15, 53D17
Keywords: Lie group; Poisson manifolds; Riemannian metric
@article{10_5817_AM2020_4_225,
     author = {Alioune, Brahim and Boucetta, Mohamed and Sid{\textquoteright}Ahmed Lessiad, Ahmed},
     title = {On {Riemann-Poisson} {Lie} groups},
     journal = {Archivum mathematicum},
     pages = {225--247},
     year = {2020},
     volume = {56},
     number = {4},
     doi = {10.5817/AM2020-4-225},
     mrnumber = {4173076},
     zbl = {07285962},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-225/}
}
TY  - JOUR
AU  - Alioune, Brahim
AU  - Boucetta, Mohamed
AU  - Sid’Ahmed Lessiad, Ahmed
TI  - On Riemann-Poisson Lie groups
JO  - Archivum mathematicum
PY  - 2020
SP  - 225
EP  - 247
VL  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-225/
DO  - 10.5817/AM2020-4-225
LA  - en
ID  - 10_5817_AM2020_4_225
ER  - 
%0 Journal Article
%A Alioune, Brahim
%A Boucetta, Mohamed
%A Sid’Ahmed Lessiad, Ahmed
%T On Riemann-Poisson Lie groups
%J Archivum mathematicum
%D 2020
%P 225-247
%V 56
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-225/
%R 10.5817/AM2020-4-225
%G en
%F 10_5817_AM2020_4_225
Alioune, Brahim; Boucetta, Mohamed; Sid’Ahmed Lessiad, Ahmed. On Riemann-Poisson Lie groups. Archivum mathematicum, Tome 56 (2020) no. 4, pp. 225-247. doi: 10.5817/AM2020-4-225

[1] Ait Haddou, M., Boucetta, M., Lebzioui, H.: Left-invariant Lorentzian flat metrics on Lie groups. J. Lie Theory 22 (1) (2012), 269–289. | MR

[2] Boucetta, M.: Compatibilité des structures pseudo-riemanniennes et des structures de Poisson. C.R. Acad. Sci. Paris Sér. I 333 (2001), 763–768. | DOI | MR

[3] Boucetta, M.: Riemann-Poisson manifolds and Kähler-Riemann foliations. C.R. Acad. Sci. Paris, Sér. I 336 (2003), 423–428. | DOI | MR

[4] Boucetta, M.: Poisson manifolds with compatible pseudo-metric and pseudo-Riemannian Lie algebras. Differential Geom. Appl. 20 (2004), 279–291. | DOI | MR

[5] Boucetta, M.: On the Riemann-Lie algebras and Riemann-Poisson Lie groups. J. Lie Theory 15 (1) (2005), 183–195. | MR

[6] Deninger, C., Singhof, W.: Real polarizable hodge structures arising from foliation. Ann. Global Anal. Geom. 21 (2002), 377–399. | DOI | MR

[7] Dufour, J.P., Zung, N.T.: Poisson Structures and Their Normal Forms. Progress in Mathematics, vol. 242, Birkhäuser Verlag, 2005. | MR

[8] Fernandes, R.L.: Connections in Poisson Geometry 1: Holonomy and invariants. J. Differential Geom. 54 (2000), 303–366. | DOI | MR

[9] Ha, K.Y., Lee, J.B.: Left invariant metrics and curvatures on simply connected three dimensional Lie groups. Math. Nachr. 282 (2009), 868–898. | DOI | MR

[10] Hawkin, E.: The structure of noncommutative deformations. J. Differential Geom. 77 (2007), 385–424. | DOI | MR

[11] Milnor, J.: Curvatures of left invariant metrics on Lie Groups. Adv. Math. 21 (1976), 293–329. | DOI | MR

[12] Ovando, G.: Invariant pseudo-Kähler metrics in dimension four. J. Lie Theory 16 (2006), 371–391. | MR

[13] Vaisman, I.: Lectures on the Geometry of Poisson Manifolds. Progress in Mathematics, vol. 118, Birkhäuser, Berlin, 1994. | MR | Zbl

Cité par Sources :