Fractional ${q}$-difference equations on the half line
Archivum mathematicum, Tome 56 (2020) no. 4, pp. 207-223 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This article deals with some results about the existence of solutions and bounded solutions and the attractivity for a class of fractional ${q}$-difference equations. Some applications are made of Schauder fixed point theorem in Banach spaces and Darbo fixed point theorem in Fréchet spaces. We use some technics associated with the concept of measure of noncompactness and the diagonalization process. Some illustrative examples are given in the last section.
This article deals with some results about the existence of solutions and bounded solutions and the attractivity for a class of fractional ${q}$-difference equations. Some applications are made of Schauder fixed point theorem in Banach spaces and Darbo fixed point theorem in Fréchet spaces. We use some technics associated with the concept of measure of noncompactness and the diagonalization process. Some illustrative examples are given in the last section.
DOI : 10.5817/AM2020-4-207
Classification : 26A33
Keywords: fractional $q$-difference equation; attractivity; diagonalization; bounded solution; Banach space; Fréchet space; fixed point
@article{10_5817_AM2020_4_207,
     author = {Abbas, Sa{\"\i}d and Benchohra, Mouffak and Laledj, Nadjet and Zhou, Yong},
     title = {Fractional ${q}$-difference equations on the half line},
     journal = {Archivum mathematicum},
     pages = {207--223},
     year = {2020},
     volume = {56},
     number = {4},
     doi = {10.5817/AM2020-4-207},
     mrnumber = {4173075},
     zbl = {07285961},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-207/}
}
TY  - JOUR
AU  - Abbas, Saïd
AU  - Benchohra, Mouffak
AU  - Laledj, Nadjet
AU  - Zhou, Yong
TI  - Fractional ${q}$-difference equations on the half line
JO  - Archivum mathematicum
PY  - 2020
SP  - 207
EP  - 223
VL  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-207/
DO  - 10.5817/AM2020-4-207
LA  - en
ID  - 10_5817_AM2020_4_207
ER  - 
%0 Journal Article
%A Abbas, Saïd
%A Benchohra, Mouffak
%A Laledj, Nadjet
%A Zhou, Yong
%T Fractional ${q}$-difference equations on the half line
%J Archivum mathematicum
%D 2020
%P 207-223
%V 56
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-207/
%R 10.5817/AM2020-4-207
%G en
%F 10_5817_AM2020_4_207
Abbas, Saïd; Benchohra, Mouffak; Laledj, Nadjet; Zhou, Yong. Fractional ${q}$-difference equations on the half line. Archivum mathematicum, Tome 56 (2020) no. 4, pp. 207-223. doi: 10.5817/AM2020-4-207

[1] Abbas, S., Benchohra, M.: On the existence and local asymptotic stability of solutions of fractional order integral equations. Comment. Math. 52 (1) (2012), 91–100. | MR

[2] Abbas, S., Benchohra, M.: Existence and attractivity for fractional order integral equations in Fréchet spaces. Discuss. Math. Differ. Incl. Control Optim. 33 (1) (2013), 1–17. | DOI | MR

[3] Abbas, S., Benchohra, M., Diagana, T.: Existence and attractivity results for some fractional order partial integro-differential equations with delay. Afr. Diaspora J. Math. 15 (2) (2013), 87–100. | MR

[4] Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: Implicit Fractional Differential and Integral Equations: Existence and Stability. De Gruyter, Berlin, 2018. | MR

[5] Abbas, S., Benchohra, M., Henderson, J.: Asymptotic attractive nonlinear fractional order Riemann-Liouville integral equations in Banach algebras. Nonlinear Stud. 20 (1) (2013), 1–10. | MR

[6] Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations. Springer, New York, 2012. | MR

[7] Abbas, S., Benchohra, M., N’Guérékata, G.M.: Advanced Fractional Differential and Integral Equations. Nova Science Publishers, New York, 2015. | MR | Zbl

[8] Adams, C.R.: In the linear ordinary $q$-difference equation. Annals Math. 30 (1928), 195–205. | DOI | MR

[9] Agarwal, R.: Certain fractional $q$- integrals and $q$-derivatives. Proc. Cambridge Philos. Soc. 66 (1969), 365–370. | MR

[10] Ahmad, B.: Boundary value problem for nonlinear third order $q$-difference equations. Electron. J. Differential Equations 2011 (94) (2011), 1–7. | MR

[11] Ahmad, B., Ntouyas, S.K., Purnaras, L.K.: Existence results for nonlocal boundary value problems of nonlinear fractional $q$-difference equations. Adv. Difference Equ. 2012 (2012), 14 pp. | MR

[12] Almezel, S., Ansari, Q.H., Khamsi, M.A.: Topics in Fixed Point Theory. Springer-Verlag, New York, 2014. | MR

[13] Benchohra, M., Berhoun, F., N’Guérékata, G.M.: Bounded solutions for fractional order differential equations on the half-line. Bull. Math. Anal. Appl. 146 (4) (2012), 62–71. | MR

[14] Bothe, D.: Multivalued perturbations of m-accretive differential inclusions. Israel J. Math. 108 (1998), 109–138. | DOI | MR

[15] Carmichael, R.D.: The general theory of linear $ q$-difference equations. American J. Math. 34 (1912), 147–168. | DOI | MR

[16] Corduneanu, C.: Integral Equations and Stability of Feedback Systems. Academic Press, New York, 1973. | MR | Zbl

[17] Dudek, S.: Fixed point theorems in Fréchet Algebras and Fréchet spaces and applications to nonlinear integral equations. Appl. Anal. Discrete Math. 11 (2017), 340–357. | DOI | MR

[18] Dudek, S., Olszowy, L.: Continuous dependence of the solutions of nonlinear integral quadratic Volterra equation on the parameter. J. Funct. Spaces (2015), 9 pp., Article ID 471235. | MR

[19] El-Shahed, M., Hassa, H.A.: Positive solutions of ${q}$-difference equation. Proc. Amer. Math. Soc. 138 (2010), 1733–1738. | DOI | MR

[20] Etemad, S., Ntouyas, S.K., Ahmad, B.: Existence theory for a fractional $q$-integro-difference equation with $q$-integral boundary conditions of different orders. Mathematics 7 (2019), 1–15. | DOI

[21] Granas, A., Dugundji, J.: Fixed Point Theory. Springer-Verlag, New York, 2003. | MR | Zbl

[22] Kac, V., Cheung, P.: Quantum Calculus. Springer, New York, 2002. | MR | Zbl

[23] Kilbas, A.A.: Hadamard-type fractional calculus. J. Korean Math. Soc. 38 (6) (2001), 1191–1204. | MR

[24] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006. | MR | Zbl

[25] Mönch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. 4 (1980), 985–999. | DOI | MR

[26] Olszowy, L.: Existence of mild solutions for the semilinear nonlocal problem in Banach spaces. Nonlinear Anal. 81 (2013), 211–223. | DOI | MR

[27] Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S.: Fractional integrals and derivatives in $q$-calculus. Appl. Anal. Discrete Math. 1 (2007), 311–323. | DOI | MR

[28] Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S.: On $q$-analogues of Caputo derivative and Mittag-Leffler function. Fract. Calc. Appl. Anal. 10 (2007), 359–373. | MR

[29] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian. | MR

[30] Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg; Higher Education Press, Beijing, 2010. | MR

[31] Tenreiro Machado, J.A., Kiryakova, V.: The chronicles of fractional calculus. Fract. Calc. Appl. Anal. 20 (2017), 307–336. | MR

[32] Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore, 2014. | MR

Cité par Sources :