Keywords: fractional $q$-difference equation; attractivity; diagonalization; bounded solution; Banach space; Fréchet space; fixed point
@article{10_5817_AM2020_4_207,
author = {Abbas, Sa{\"\i}d and Benchohra, Mouffak and Laledj, Nadjet and Zhou, Yong},
title = {Fractional ${q}$-difference equations on the half line},
journal = {Archivum mathematicum},
pages = {207--223},
year = {2020},
volume = {56},
number = {4},
doi = {10.5817/AM2020-4-207},
mrnumber = {4173075},
zbl = {07285961},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-207/}
}
TY - JOUR
AU - Abbas, Saïd
AU - Benchohra, Mouffak
AU - Laledj, Nadjet
AU - Zhou, Yong
TI - Fractional ${q}$-difference equations on the half line
JO - Archivum mathematicum
PY - 2020
SP - 207
EP - 223
VL - 56
IS - 4
UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-207/
DO - 10.5817/AM2020-4-207
LA - en
ID - 10_5817_AM2020_4_207
ER -
%0 Journal Article
%A Abbas, Saïd
%A Benchohra, Mouffak
%A Laledj, Nadjet
%A Zhou, Yong
%T Fractional ${q}$-difference equations on the half line
%J Archivum mathematicum
%D 2020
%P 207-223
%V 56
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-207/
%R 10.5817/AM2020-4-207
%G en
%F 10_5817_AM2020_4_207
Abbas, Saïd; Benchohra, Mouffak; Laledj, Nadjet; Zhou, Yong. Fractional ${q}$-difference equations on the half line. Archivum mathematicum, Tome 56 (2020) no. 4, pp. 207-223. doi: 10.5817/AM2020-4-207
[1] Abbas, S., Benchohra, M.: On the existence and local asymptotic stability of solutions of fractional order integral equations. Comment. Math. 52 (1) (2012), 91–100. | MR
[2] Abbas, S., Benchohra, M.: Existence and attractivity for fractional order integral equations in Fréchet spaces. Discuss. Math. Differ. Incl. Control Optim. 33 (1) (2013), 1–17. | DOI | MR
[3] Abbas, S., Benchohra, M., Diagana, T.: Existence and attractivity results for some fractional order partial integro-differential equations with delay. Afr. Diaspora J. Math. 15 (2) (2013), 87–100. | MR
[4] Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: Implicit Fractional Differential and Integral Equations: Existence and Stability. De Gruyter, Berlin, 2018. | MR
[5] Abbas, S., Benchohra, M., Henderson, J.: Asymptotic attractive nonlinear fractional order Riemann-Liouville integral equations in Banach algebras. Nonlinear Stud. 20 (1) (2013), 1–10. | MR
[6] Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations. Springer, New York, 2012. | MR
[7] Abbas, S., Benchohra, M., N’Guérékata, G.M.: Advanced Fractional Differential and Integral Equations. Nova Science Publishers, New York, 2015. | MR | Zbl
[8] Adams, C.R.: In the linear ordinary $q$-difference equation. Annals Math. 30 (1928), 195–205. | DOI | MR
[9] Agarwal, R.: Certain fractional $q$- integrals and $q$-derivatives. Proc. Cambridge Philos. Soc. 66 (1969), 365–370. | MR
[10] Ahmad, B.: Boundary value problem for nonlinear third order $q$-difference equations. Electron. J. Differential Equations 2011 (94) (2011), 1–7. | MR
[11] Ahmad, B., Ntouyas, S.K., Purnaras, L.K.: Existence results for nonlocal boundary value problems of nonlinear fractional $q$-difference equations. Adv. Difference Equ. 2012 (2012), 14 pp. | MR
[12] Almezel, S., Ansari, Q.H., Khamsi, M.A.: Topics in Fixed Point Theory. Springer-Verlag, New York, 2014. | MR
[13] Benchohra, M., Berhoun, F., N’Guérékata, G.M.: Bounded solutions for fractional order differential equations on the half-line. Bull. Math. Anal. Appl. 146 (4) (2012), 62–71. | MR
[14] Bothe, D.: Multivalued perturbations of m-accretive differential inclusions. Israel J. Math. 108 (1998), 109–138. | DOI | MR
[15] Carmichael, R.D.: The general theory of linear $ q$-difference equations. American J. Math. 34 (1912), 147–168. | DOI | MR
[16] Corduneanu, C.: Integral Equations and Stability of Feedback Systems. Academic Press, New York, 1973. | MR | Zbl
[17] Dudek, S.: Fixed point theorems in Fréchet Algebras and Fréchet spaces and applications to nonlinear integral equations. Appl. Anal. Discrete Math. 11 (2017), 340–357. | DOI | MR
[18] Dudek, S., Olszowy, L.: Continuous dependence of the solutions of nonlinear integral quadratic Volterra equation on the parameter. J. Funct. Spaces (2015), 9 pp., Article ID 471235. | MR
[19] El-Shahed, M., Hassa, H.A.: Positive solutions of ${q}$-difference equation. Proc. Amer. Math. Soc. 138 (2010), 1733–1738. | DOI | MR
[20] Etemad, S., Ntouyas, S.K., Ahmad, B.: Existence theory for a fractional $q$-integro-difference equation with $q$-integral boundary conditions of different orders. Mathematics 7 (2019), 1–15. | DOI
[21] Granas, A., Dugundji, J.: Fixed Point Theory. Springer-Verlag, New York, 2003. | MR | Zbl
[22] Kac, V., Cheung, P.: Quantum Calculus. Springer, New York, 2002. | MR | Zbl
[23] Kilbas, A.A.: Hadamard-type fractional calculus. J. Korean Math. Soc. 38 (6) (2001), 1191–1204. | MR
[24] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006. | MR | Zbl
[25] Mönch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. 4 (1980), 985–999. | DOI | MR
[26] Olszowy, L.: Existence of mild solutions for the semilinear nonlocal problem in Banach spaces. Nonlinear Anal. 81 (2013), 211–223. | DOI | MR
[27] Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S.: Fractional integrals and derivatives in $q$-calculus. Appl. Anal. Discrete Math. 1 (2007), 311–323. | DOI | MR
[28] Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S.: On $q$-analogues of Caputo derivative and Mittag-Leffler function. Fract. Calc. Appl. Anal. 10 (2007), 359–373. | MR
[29] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian. | MR
[30] Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg; Higher Education Press, Beijing, 2010. | MR
[31] Tenreiro Machado, J.A., Kiryakova, V.: The chronicles of fractional calculus. Fract. Calc. Appl. Anal. 20 (2017), 307–336. | MR
[32] Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore, 2014. | MR
Cité par Sources :