Keywords: Liénard system; Bogdanov-Takens system; limit cycle; Bendixson-Dulac criterion; algebraic invariant curve
@article{10_5817_AM2020_4_199,
author = {Hayashi, Makoto},
title = {An improvement of the non-existence region for limit cycles of the {Bogdanov-Takens} system},
journal = {Archivum mathematicum},
pages = {199--206},
year = {2020},
volume = {56},
number = {4},
doi = {10.5817/AM2020-4-199},
mrnumber = {4173074},
zbl = {07285960},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-199/}
}
TY - JOUR AU - Hayashi, Makoto TI - An improvement of the non-existence region for limit cycles of the Bogdanov-Takens system JO - Archivum mathematicum PY - 2020 SP - 199 EP - 206 VL - 56 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-199/ DO - 10.5817/AM2020-4-199 LA - en ID - 10_5817_AM2020_4_199 ER -
%0 Journal Article %A Hayashi, Makoto %T An improvement of the non-existence region for limit cycles of the Bogdanov-Takens system %J Archivum mathematicum %D 2020 %P 199-206 %V 56 %N 4 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-4-199/ %R 10.5817/AM2020-4-199 %G en %F 10_5817_AM2020_4_199
Hayashi, Makoto. An improvement of the non-existence region for limit cycles of the Bogdanov-Takens system. Archivum mathematicum, Tome 56 (2020) no. 4, pp. 199-206. doi: 10.5817/AM2020-4-199
[1] Gasull, A., Giacomini, H., Pérez-González, S., Torregrosa, J.: A proof of Perko’s conjectures for the Bogdanov-Takens system. J. Differential Equations 255 (2013), 2655–2671. | DOI | MR
[2] Gasull, A., Giacomini, H., Torregrosa, J.: Some results on homoclinic and heteroclinic connections in planar systems. Nonlinearity 23 (2010), 2977–3001. | DOI | MR
[3] Gasull, A., Guillamon, A.: Non-existence of limit cycles for some predator–prey systems. Proceedings of Equadiff'91, World Scientific, Singapore, 1993, pp. 538–546. | MR
[4] Hayashi, M.: On the Non-existence of the closed Orbit for a Liénard system. Southeast Asian Bull. Math. 24 (2000), 225–229. | DOI | MR
[5] Hayashi, M.: A global condition for the non-existence of limit cycles of Bogdanov-Takens system. Far East J. Math. Sci. 14 (1) (2004), 127–136. | MR
[6] Hayashi, M., Villari, G., Zanolin, F.: On the uniqueness of limit cycle for certain Liénard systems without symmetry. Electron. J. Qual. Theory Differ. Equ. 55 (2018), 1–10. | DOI | MR
[7] Kuznetsov, Y.: Elements of Applied Bifurcation Theory. second ed., Springer-Verlag, New York, 1998. | MR | Zbl
[8] Li, Cheng-zhi, Rousseau, C., Wang, X.: A simple proof for the unicity of the limit cycle in the Bogdanov-Takens system. Canad. Math. Bull. 33 (1) (1990), 84–92. | DOI | MR
[9] Matsumoto, T., Komuro, M., Kokubu, H., Tokunaga, R.: Bifurcations (Sights, Sounds and Mathematics). Springer-Verlag, New York, 1993.
[10] Perko, L.M.: A global analysis of the Bogdanov-Takens system. SIAM J. Appl. Math. 52 (1992), 1172–1192. | DOI | MR
[11] Perko, L.M.: Differential Equations and Dynamical Systems. Texts Appl. Math., vol. 7, Springer-Verlag, New York, 3rd ed., 2001. | DOI | MR
[12] Roussarie, R., Wagener, F.: A study of the Bogdanov-Takens bifurcation. Resenhas 2 (1995), 1–25. | MR
[13] Teschl, G.: Ordinary Differential Equations and Dynamical systems. Graduate Studies in Mathematics, vol. 140, AMS, Providence, 2012. | DOI | MR
[14] Zhi-fen, Z., Tong-ren, D., Wen-zao, H., Zhen-xi, D.: Qualitative Theory of Differential Equations. Translations of Mathematical Monographs, vol. 102, AMS, Providence, 1992. | MR
Cité par Sources :