The reduced ideals of a special order in a pure cubic number field
Archivum mathematicum, Tome 56 (2020) no. 3, pp. 171-182
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $K=\mathbb{Q}(\theta )$ be a pure cubic field, with $\theta ^3=D$, where $D$ is a cube-free integer. We will determine the reduced ideals of the order $\mathcal{O}=\mathbb{Z}[\theta ]$ of $K$ which coincides with the maximal order of $K$ in the case where $D$ is square-free and $\not\equiv\pm1\pmod9$.
DOI :
10.5817/AM2020-3-171
Classification :
11R16, 11R29, 11T71
Keywords: cubic field; reduced ideal
Keywords: cubic field; reduced ideal
@article{10_5817_AM2020_3_171,
author = {Azizi, Abdelmalek and Benamara, Jamal and Ismaili, Moulay Chrif and Talbi, Mohammed},
title = {The reduced ideals of a special order in a pure cubic number field},
journal = {Archivum mathematicum},
pages = {171--182},
publisher = {mathdoc},
volume = {56},
number = {3},
year = {2020},
doi = {10.5817/AM2020-3-171},
mrnumber = {4156443},
zbl = {07250677},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-171/}
}
TY - JOUR AU - Azizi, Abdelmalek AU - Benamara, Jamal AU - Ismaili, Moulay Chrif AU - Talbi, Mohammed TI - The reduced ideals of a special order in a pure cubic number field JO - Archivum mathematicum PY - 2020 SP - 171 EP - 182 VL - 56 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-171/ DO - 10.5817/AM2020-3-171 LA - en ID - 10_5817_AM2020_3_171 ER -
%0 Journal Article %A Azizi, Abdelmalek %A Benamara, Jamal %A Ismaili, Moulay Chrif %A Talbi, Mohammed %T The reduced ideals of a special order in a pure cubic number field %J Archivum mathematicum %D 2020 %P 171-182 %V 56 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-171/ %R 10.5817/AM2020-3-171 %G en %F 10_5817_AM2020_3_171
Azizi, Abdelmalek; Benamara, Jamal; Ismaili, Moulay Chrif; Talbi, Mohammed. The reduced ideals of a special order in a pure cubic number field. Archivum mathematicum, Tome 56 (2020) no. 3, pp. 171-182. doi: 10.5817/AM2020-3-171
Cité par Sources :