Keywords: cubic field; reduced ideal
@article{10_5817_AM2020_3_171,
author = {Azizi, Abdelmalek and Benamara, Jamal and Ismaili, Moulay Chrif and Talbi, Mohammed},
title = {The reduced ideals of a special order in a pure cubic number field},
journal = {Archivum mathematicum},
pages = {171--182},
year = {2020},
volume = {56},
number = {3},
doi = {10.5817/AM2020-3-171},
mrnumber = {4156443},
zbl = {07250677},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-171/}
}
TY - JOUR AU - Azizi, Abdelmalek AU - Benamara, Jamal AU - Ismaili, Moulay Chrif AU - Talbi, Mohammed TI - The reduced ideals of a special order in a pure cubic number field JO - Archivum mathematicum PY - 2020 SP - 171 EP - 182 VL - 56 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-171/ DO - 10.5817/AM2020-3-171 LA - en ID - 10_5817_AM2020_3_171 ER -
%0 Journal Article %A Azizi, Abdelmalek %A Benamara, Jamal %A Ismaili, Moulay Chrif %A Talbi, Mohammed %T The reduced ideals of a special order in a pure cubic number field %J Archivum mathematicum %D 2020 %P 171-182 %V 56 %N 3 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-171/ %R 10.5817/AM2020-3-171 %G en %F 10_5817_AM2020_3_171
Azizi, Abdelmalek; Benamara, Jamal; Ismaili, Moulay Chrif; Talbi, Mohammed. The reduced ideals of a special order in a pure cubic number field. Archivum mathematicum, Tome 56 (2020) no. 3, pp. 171-182. doi: 10.5817/AM2020-3-171
[1] Alaca, S., Williams, K.S.: Introductory algebraic number theory. Cambridge University Press, Cambridge, UK, 2004. | MR
[2] Buchmann, J.A., Scheidler, R., Williams, H.C.: Implementation of a key exchange protocol using real quadratic fields. Advances in Cryptography–EUROCRYPT'90. EUROCRYPT 1990. Lecture Notes in Computer Science (Damgård, I.B., ed.), vol. 473, Springer, Berlin, Heidelberg, 1991, pp. 98–109. | MR
[3] Buchmann, J.A., Williams, H.C.: A key-exchange system based on imaginary quadratic fields. J. Cryptology 1 (1988), 107–118. | DOI | MR
[4] Buchmann, J.A., Williams, H.C.: On the infrastructure of the principal ideal class of an algebraic number field of unit rank one. Math. Comp. 50 (182) (1988), 569–579. | DOI | MR
[5] Buchmann, J.A., Williams, H.C.: A sub exponential algorithm for the determination of class groups and regulators of algebraic number fields. Seminaire de Theorie des Nombres, Paris 1988–1989, Progr. Math., vol. 91, Birkhauser Boston, Boston, MA, 1990, pp. 27–41. | MR
[6] Cohen, H.: A course in computational algebraic number theory. Springer–Verlag, 1996. | MR
[7] Jacobs, G.T.: Reduced ideals and periodic sequences in pure cubic fields. Ph.D. thesis, University of North Texas, 2015, August 2015, https://digital.library.unt.edu/ark:/67531/metadc804842 | MR
[8] Mollin, R.: Quadratics. CRC Press, Inc., Boca Raton, Florida, 1996. | MR | Zbl
[9] Neukirch, J.: Algebraic Number Theory. Springer–Verlag Berlin, Heidelberg, 1999. | MR | Zbl
[10] Payan, J.: Sur le groupe des classes d’un corps quadratique. Cours de l'institut Fourier 7 (1972), 2–30.
[11] Prabpayak, C.: Orders in pure cubic number fields. Ph.D. thesis, Univ. Graz. Grazer Math. Ber. 361, 2014. | MR
Cité par Sources :