Modular Classes of Q-Manifolds, Part II: Riemannian Structures $\$ Odd Killing Vectors Fields
Archivum mathematicum, Tome 56 (2020) no. 3, pp. 153-170 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We define and make an initial study of (even) Riemannian supermanifolds equipped with a homological vector field that is also a Killing vector field. We refer to such supermanifolds as Riemannian Q-manifolds. We show that such Q-manifolds are unimodular, i.e., come equipped with a Q-invariant Berezin volume.
We define and make an initial study of (even) Riemannian supermanifolds equipped with a homological vector field that is also a Killing vector field. We refer to such supermanifolds as Riemannian Q-manifolds. We show that such Q-manifolds are unimodular, i.e., come equipped with a Q-invariant Berezin volume.
DOI : 10.5817/AM2020-3-153
Classification : 17B66, 57R20, 57R25, 58A50, 58B20
Keywords: Q-manifolds; Riemannian supermanifolds; Killing vector fields; modular classes
@article{10_5817_AM2020_3_153,
     author = {Bruce, Andrew James},
     title = {Modular {Classes} of {Q-Manifolds,} {Part} {II:} {Riemannian} {Structures} $\&$ {Odd} {Killing} {Vectors} {Fields}},
     journal = {Archivum mathematicum},
     pages = {153--170},
     year = {2020},
     volume = {56},
     number = {3},
     doi = {10.5817/AM2020-3-153},
     mrnumber = {4156442},
     zbl = {07250676},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-153/}
}
TY  - JOUR
AU  - Bruce, Andrew James
TI  - Modular Classes of Q-Manifolds, Part II: Riemannian Structures $\&$ Odd Killing Vectors Fields
JO  - Archivum mathematicum
PY  - 2020
SP  - 153
EP  - 170
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-153/
DO  - 10.5817/AM2020-3-153
LA  - en
ID  - 10_5817_AM2020_3_153
ER  - 
%0 Journal Article
%A Bruce, Andrew James
%T Modular Classes of Q-Manifolds, Part II: Riemannian Structures $\&$ Odd Killing Vectors Fields
%J Archivum mathematicum
%D 2020
%P 153-170
%V 56
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-153/
%R 10.5817/AM2020-3-153
%G en
%F 10_5817_AM2020_3_153
Bruce, Andrew James. Modular Classes of Q-Manifolds, Part II: Riemannian Structures $\&$ Odd Killing Vectors Fields. Archivum mathematicum, Tome 56 (2020) no. 3, pp. 153-170. doi: 10.5817/AM2020-3-153

[1] Alexandrov, M., Schwarz, A., Zaboronsky, O., Kontsevich, M.: The geometry of the master equation and topological quantum field theory. Internat. J. Modern Phys. A 12 (5) (1997), 1405–1429, , arXiv:hep-th/9502010, | arXiv | DOI

[2] Berezin, F.A., Leites, D.A.: Supermanifolds. Dokl. Akad. Nauk SSSR 224 (3) (1975), 505–508, (Russian). | MR

[3] Bruce, A.J.: Modular classes of Q-manifolds: a review and some applications. Arch. Math. (Brno) 53 (4) (2017), 203–219. | DOI | MR

[4] Carmeli, C., Caston, L., Fioresi, R.: Mathematical foundations of supersymmetry. EMS Series of Lectures in Mathematics, Zürich, 2011, xiv+287 pp., ISBN: 978-3-03719-097-5. | MR | Zbl

[5] DeWitt, B.: Supermanifolds. second ed., Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1992, xviii+407 pp. ISBN: 0-521-41320-6; 0-521-42377-5. | MR

[6] Duplij, S., Siegel, W., Bagger, J. (editors): Concise encyclopedia of supersymmetry and noncommutative structures in mathematics and physics. Kluwer Academic Publishers, Dordrecht, 2004, iv+561 pp. ISBN: 1-4020-1338-8. | MR

[7] Evens, S., Lu, J.H., Weinstein, A.: Transverse measures, the modular class and a cohomology pairing for Lie algebroids. Quart. J. Math. Oxford Ser. (2) 50 (200) (1999), 417–436, , arXiv:dg-ga/9610008. | arXiv | DOI | MR | Zbl

[8] Galaev, A.S.: Irreducible holonomy algebras of Riemannian supermanifolds. Ann. Global Anal. Geom. 42 (1) (2012), 1–27, , arXiv:0906.5250. | arXiv | DOI | MR

[9] Garnier, S., Kalus, M.: A lossless reduction of geodesics on supermanifolds to non-graded differential geometry. Arch. Math. (Brno) 50 (4) (2014), 205–218, , arXiv:1406.5870. | arXiv | DOI | MR

[10] Garnier, S., Wurzbacher, T.: The geodesic flow on a Riemannian supermanifold. J. Geom. Phys. 62 (6) (2012), 1489–1508, , arXiv:1107.1815. | arXiv | DOI | MR | Zbl

[11] Goertsches, O.: Riemannian supergeometry. Math. Z. 260 (3) (2008), 557–593, , arXiv:math/0604143. | arXiv | MR | Zbl

[12] Grabowski, J.: Modular classes revisited. Int. J. Geom. Methods Mod. Phys. 11 (9) (2014), 1460042, 11 pp., , arXiv:1311.3962. | arXiv | MR | Zbl

[13] Grabowski, J., Rotkiewicz, M.: Graded bundles and homogeneity structures. J. Geom. Phys. 62 (1) (2012), 21–36, , arXiv:1102.0180. | arXiv | DOI | MR

[14] Groeger, J.: Killing vector fields and harmonic superfield theories. J. Math. Phys. 55 (9) (2014), 093503, 17 pp., , arXiv:1301.5474. | arXiv | MR

[15] Kalus, M.: Non-split almost complex and non-split Riemannian supermanifolds. Arch. Math. (Brno) 55 (4) (2019), 229–238, , arXiv:1501.07117. | arXiv | DOI | MR

[16] Klinker, F.: Supersymmetric Killing structures. Comm. Math. Phys. 255 (2) (2005), 419–467, , arXiv:2001.03239. | arXiv | DOI | MR

[17] Leites, D.A.: Introduction to the theory of supermanifolds. Russ. Math. Surv. 35 (1) (1980), 1–64, | DOI | MR | Zbl

[18] Lyakhovich, S.L., Mosman, E.A., Sharapov, A.A.: Characteristic classes of Q-manifolds: classification and applications. J. Geom. Phys. 60 (5) (2010), 729–759, , arXiv:0906.0466. | arXiv | DOI | MR | Zbl

[19] Lyakhovich, S.L., Sharapov, A.A.: Characteristic classes of gauge systems. Nuclear Phys. B 703 (3) (2004), 419–453, , arXiv:hep-th/0407113. | arXiv | DOI | MR | Zbl

[20] Manin, Y.I.: Gauge field theory and complex geometry. second ed., Fundamental Principles of Mathematical Sciences, vol. 289, Springer-Verlag, Berlin, 1997, xii+346 pp. ISBN: 3-540-61378-1. | MR | Zbl

[21] Monterde, J., Sánchez-Valenzuela, O.A.: The exterior derivative as a Killing vector field. Israel J. Math. 93 (1997), 157–170. | DOI | MR

[22] Mosman, E.A., Sharapov, A.A.: Quasi-Riemannian structures on supermanifolds and characteristic classes. Russian Phys. J. 54 (6) (2011), 668–672. | MR

[23] Roytenberg, D.: On the structure of graded symplectic supermanifolds and Courant algebroids. Quantization, Poisson brackets and beyond, vol. 315, Amer. Math. Soc., Providence, RI, Contemp. Math. ed., 2002, (Manchester, 2001), 169–185, , arXiv:math/0203110. | arXiv | MR | Zbl

[24] Schwarz, A.: Semiclassical approximation in Batalin-Vilkovisky formalism. Comm. Math. Phys. 158 (2) (1993), 373–396, , arXiv:hep-th/9210115. | arXiv | DOI | MR

[25] Shander, V.N.: Vector fields and differential equations on supermanifolds. Funct. Anal. Appl. 14 (2) (1980), 160–162. | DOI | MR

[26] Shander, V.N.: Orientations of supermanifolds. Functional Anal. Appl. 22 (1) (1988), 80–82. | DOI | MR | Zbl

[27] Vaĭntrob, A.Yu.: Normal forms of homological vector fields. J. Math. Sci. 82 (6) (1996), 3865–3868. | DOI | MR

[28] Vaĭntrob, A.Yu.: Lie algebroids and homological vector fields. Russ. Math. Surv. 52 (1997), 428–429. | DOI | MR | Zbl

[29] Varadarajan, V.S.: Supersymmetry for mathematicians: an introduction. Courant Lecture Notes in Mathematics, 11. New York University, Courant Institute of Mathematical Sciences, New York ed., American Mathematical Society, Providence, RI, 2004, viii+300 pp. ISBN: 0-8218-3574-2. | MR | Zbl

[30] Voronov, Th.: Graded manifolds and Drinfeld doubles for Lie bialgebroids, Quantization, Poisson brackets and beyond. Contemp. Math., vol. 315, Amer. Math. Soc., Providence, RI, 2002, , arXiv:math/0105237. | arXiv | DOI | MR

[31] Voronov, Th.: Geometric integration theory on supermanifolds. Classic Reviews in Mathematics $\&$ Mathematical Physics ed., Cambridge Scientific Publishers, 2014, 150 pp., ISBN: 978-1-904868-82-8. | MR

[32] Voronov, Th.: On volumes of classical supermanifolds. Sb. Math. 217, (11–12) (2016), 1512–1536, , arXiv:1503.06542. | arXiv | DOI | MR

Cité par Sources :