Modular Classes of Q-Manifolds, Part II: Riemannian Structures $\$ Odd Killing Vectors Fields
Archivum mathematicum, Tome 56 (2020) no. 3, pp. 153-170.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We define and make an initial study of (even) Riemannian supermanifolds equipped with a homological vector field that is also a Killing vector field. We refer to such supermanifolds as Riemannian Q-manifolds. We show that such Q-manifolds are unimodular, i.e., come equipped with a Q-invariant Berezin volume.
DOI : 10.5817/AM2020-3-153
Classification : 17B66, 57R20, 57R25, 58A50, 58B20
Keywords: Q-manifolds; Riemannian supermanifolds; Killing vector fields; modular classes
@article{10_5817_AM2020_3_153,
     author = {Bruce, Andrew James},
     title = {Modular {Classes} of {Q-Manifolds,} {Part} {II:} {Riemannian} {Structures} $\&$ {Odd} {Killing} {Vectors} {Fields}},
     journal = {Archivum mathematicum},
     pages = {153--170},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2020},
     doi = {10.5817/AM2020-3-153},
     mrnumber = {4156442},
     zbl = {07250676},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-153/}
}
TY  - JOUR
AU  - Bruce, Andrew James
TI  - Modular Classes of Q-Manifolds, Part II: Riemannian Structures $\&$ Odd Killing Vectors Fields
JO  - Archivum mathematicum
PY  - 2020
SP  - 153
EP  - 170
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-153/
DO  - 10.5817/AM2020-3-153
LA  - en
ID  - 10_5817_AM2020_3_153
ER  - 
%0 Journal Article
%A Bruce, Andrew James
%T Modular Classes of Q-Manifolds, Part II: Riemannian Structures $\&$ Odd Killing Vectors Fields
%J Archivum mathematicum
%D 2020
%P 153-170
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-153/
%R 10.5817/AM2020-3-153
%G en
%F 10_5817_AM2020_3_153
Bruce, Andrew James. Modular Classes of Q-Manifolds, Part II: Riemannian Structures $\&$ Odd Killing Vectors Fields. Archivum mathematicum, Tome 56 (2020) no. 3, pp. 153-170. doi : 10.5817/AM2020-3-153. http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-153/

Cité par Sources :