Bounds for the counting function of the Jordan-Pólya numbers
Archivum mathematicum, Tome 56 (2020) no. 3, pp. 141-152 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A positive integer $n$ is said to be a Jordan-Pólya number if it can be written as a product of factorials. We obtain non-trivial lower and upper bounds for the number of Jordan-Pólya numbers not exceeding a given number $x$.
A positive integer $n$ is said to be a Jordan-Pólya number if it can be written as a product of factorials. We obtain non-trivial lower and upper bounds for the number of Jordan-Pólya numbers not exceeding a given number $x$.
DOI : 10.5817/AM2020-3-141
Classification : 11A41, 11A51, 11B65, 11N05
Keywords: Jordan-Pólya numbers; factorial function; friable numbers
@article{10_5817_AM2020_3_141,
     author = {De Koninck, Jean-Marie and Doyon, Nicolas and Razafindrasoanaivolala, A. Arthur Bonkli and Verreault, William},
     title = {Bounds for the counting function of the {Jordan-P\'olya} numbers},
     journal = {Archivum mathematicum},
     pages = {141--152},
     year = {2020},
     volume = {56},
     number = {3},
     doi = {10.5817/AM2020-3-141},
     mrnumber = {4156441},
     zbl = {07250675},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-141/}
}
TY  - JOUR
AU  - De Koninck, Jean-Marie
AU  - Doyon, Nicolas
AU  - Razafindrasoanaivolala, A. Arthur Bonkli
AU  - Verreault, William
TI  - Bounds for the counting function of the Jordan-Pólya numbers
JO  - Archivum mathematicum
PY  - 2020
SP  - 141
EP  - 152
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-141/
DO  - 10.5817/AM2020-3-141
LA  - en
ID  - 10_5817_AM2020_3_141
ER  - 
%0 Journal Article
%A De Koninck, Jean-Marie
%A Doyon, Nicolas
%A Razafindrasoanaivolala, A. Arthur Bonkli
%A Verreault, William
%T Bounds for the counting function of the Jordan-Pólya numbers
%J Archivum mathematicum
%D 2020
%P 141-152
%V 56
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-141/
%R 10.5817/AM2020-3-141
%G en
%F 10_5817_AM2020_3_141
De Koninck, Jean-Marie; Doyon, Nicolas; Razafindrasoanaivolala, A. Arthur Bonkli; Verreault, William. Bounds for the counting function of the Jordan-Pólya numbers. Archivum mathematicum, Tome 56 (2020) no. 3, pp. 141-152. doi: 10.5817/AM2020-3-141

[1] De Angelis, V.: Stirling’s series revisited. Amer. Math. Monthly 116 (2009), 839–843. | DOI | MR

[2] De Koninck, J.-M., Luca, F.: Analytic Number Theory: Exploring the Anatomy of Integers. Graduate Studies in Mathematics, vol. 134, American Mathematical Society, Providence, Rhode Island, 2012. | MR

[3] Ellison, W., Ellison, F.: Prime Numbers. Hermann, Paris, 1985. | MR

[4] Ennola, V.: On numbers with small prime divisors. Ann. Acad. Sci. Fenn. Ser. AI 440 (1969), 16 pp. | MR

[5] Erdös, P., Graham, R.L.: On products of factorials. Bull. Inst. Math. Acad. Sinica 4 (2) (1976), 337–355. | MR

[6] Feller, W.: An introduction to probability theory and its applications. Vol. I, Third edition, John Wiley $\&$ Sons, Inc., New York-London-Sydney, 1968, xviii+509 pp. | MR

[7] Granville, A.: Smooth numbers: computational number theory and beyond. Algorithmic number theory: lattices, number fields, curves and cryptography. Math. Sci. Res. Inst. Publ. 44 (2008), 267–323, Cambridge Univ. Press, Cambridge. | MR

[8] Luca, F.: On factorials which are products of factorials. Math. Proc. Cambridge Philos. Soc. 143 (3) (2007), 533–542. | DOI | MR

[9] Nair, S.G., Shorey, T.N.: Lower bounds for the greatest prime factor of product of consecutive positive integers. J. Number Theory 159 (2016), 307–328. | DOI | MR

[10] Rosser, J.B.: The $n$-th prime is greater than $n\log n$. Proc. London Math. Soc. (2) 45 (1938), 21–44. | MR

[11] Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), 64–94. | DOI | MR

[12] Tenenbaum, G.: Introduction à la théorie analytique des nombres. Collection Échelles, Belin, 2008. | MR

Cité par Sources :