Bounds for the counting function of the Jordan-Pólya numbers
Archivum mathematicum, Tome 56 (2020) no. 3, pp. 141-152
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A positive integer $n$ is said to be a Jordan-Pólya number if it can be written as a product of factorials. We obtain non-trivial lower and upper bounds for the number of Jordan-Pólya numbers not exceeding a given number $x$.
DOI :
10.5817/AM2020-3-141
Classification :
11A41, 11A51, 11B65, 11N05
Keywords: Jordan-Pólya numbers; factorial function; friable numbers
Keywords: Jordan-Pólya numbers; factorial function; friable numbers
@article{10_5817_AM2020_3_141,
author = {De Koninck, Jean-Marie and Doyon, Nicolas and Razafindrasoanaivolala, A. Arthur Bonkli and Verreault, William},
title = {Bounds for the counting function of the {Jordan-P\'olya} numbers},
journal = {Archivum mathematicum},
pages = {141--152},
publisher = {mathdoc},
volume = {56},
number = {3},
year = {2020},
doi = {10.5817/AM2020-3-141},
mrnumber = {4156441},
zbl = {07250675},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-141/}
}
TY - JOUR AU - De Koninck, Jean-Marie AU - Doyon, Nicolas AU - Razafindrasoanaivolala, A. Arthur Bonkli AU - Verreault, William TI - Bounds for the counting function of the Jordan-Pólya numbers JO - Archivum mathematicum PY - 2020 SP - 141 EP - 152 VL - 56 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-141/ DO - 10.5817/AM2020-3-141 LA - en ID - 10_5817_AM2020_3_141 ER -
%0 Journal Article %A De Koninck, Jean-Marie %A Doyon, Nicolas %A Razafindrasoanaivolala, A. Arthur Bonkli %A Verreault, William %T Bounds for the counting function of the Jordan-Pólya numbers %J Archivum mathematicum %D 2020 %P 141-152 %V 56 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-141/ %R 10.5817/AM2020-3-141 %G en %F 10_5817_AM2020_3_141
De Koninck, Jean-Marie; Doyon, Nicolas; Razafindrasoanaivolala, A. Arthur Bonkli; Verreault, William. Bounds for the counting function of the Jordan-Pólya numbers. Archivum mathematicum, Tome 56 (2020) no. 3, pp. 141-152. doi: 10.5817/AM2020-3-141
Cité par Sources :