Keywords: Jordan-Pólya numbers; factorial function; friable numbers
@article{10_5817_AM2020_3_141,
author = {De Koninck, Jean-Marie and Doyon, Nicolas and Razafindrasoanaivolala, A. Arthur Bonkli and Verreault, William},
title = {Bounds for the counting function of the {Jordan-P\'olya} numbers},
journal = {Archivum mathematicum},
pages = {141--152},
year = {2020},
volume = {56},
number = {3},
doi = {10.5817/AM2020-3-141},
mrnumber = {4156441},
zbl = {07250675},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-141/}
}
TY - JOUR AU - De Koninck, Jean-Marie AU - Doyon, Nicolas AU - Razafindrasoanaivolala, A. Arthur Bonkli AU - Verreault, William TI - Bounds for the counting function of the Jordan-Pólya numbers JO - Archivum mathematicum PY - 2020 SP - 141 EP - 152 VL - 56 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-141/ DO - 10.5817/AM2020-3-141 LA - en ID - 10_5817_AM2020_3_141 ER -
%0 Journal Article %A De Koninck, Jean-Marie %A Doyon, Nicolas %A Razafindrasoanaivolala, A. Arthur Bonkli %A Verreault, William %T Bounds for the counting function of the Jordan-Pólya numbers %J Archivum mathematicum %D 2020 %P 141-152 %V 56 %N 3 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2020-3-141/ %R 10.5817/AM2020-3-141 %G en %F 10_5817_AM2020_3_141
De Koninck, Jean-Marie; Doyon, Nicolas; Razafindrasoanaivolala, A. Arthur Bonkli; Verreault, William. Bounds for the counting function of the Jordan-Pólya numbers. Archivum mathematicum, Tome 56 (2020) no. 3, pp. 141-152. doi: 10.5817/AM2020-3-141
[1] De Angelis, V.: Stirling’s series revisited. Amer. Math. Monthly 116 (2009), 839–843. | DOI | MR
[2] De Koninck, J.-M., Luca, F.: Analytic Number Theory: Exploring the Anatomy of Integers. Graduate Studies in Mathematics, vol. 134, American Mathematical Society, Providence, Rhode Island, 2012. | MR
[3] Ellison, W., Ellison, F.: Prime Numbers. Hermann, Paris, 1985. | MR
[4] Ennola, V.: On numbers with small prime divisors. Ann. Acad. Sci. Fenn. Ser. AI 440 (1969), 16 pp. | MR
[5] Erdös, P., Graham, R.L.: On products of factorials. Bull. Inst. Math. Acad. Sinica 4 (2) (1976), 337–355. | MR
[6] Feller, W.: An introduction to probability theory and its applications. Vol. I, Third edition, John Wiley $\&$ Sons, Inc., New York-London-Sydney, 1968, xviii+509 pp. | MR
[7] Granville, A.: Smooth numbers: computational number theory and beyond. Algorithmic number theory: lattices, number fields, curves and cryptography. Math. Sci. Res. Inst. Publ. 44 (2008), 267–323, Cambridge Univ. Press, Cambridge. | MR
[8] Luca, F.: On factorials which are products of factorials. Math. Proc. Cambridge Philos. Soc. 143 (3) (2007), 533–542. | DOI | MR
[9] Nair, S.G., Shorey, T.N.: Lower bounds for the greatest prime factor of product of consecutive positive integers. J. Number Theory 159 (2016), 307–328. | DOI | MR
[10] Rosser, J.B.: The $n$-th prime is greater than $n\log n$. Proc. London Math. Soc. (2) 45 (1938), 21–44. | MR
[11] Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), 64–94. | DOI | MR
[12] Tenenbaum, G.: Introduction à la théorie analytique des nombres. Collection Échelles, Belin, 2008. | MR
Cité par Sources :